Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x và y tỉ lệ thuận nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{6}{-2}=-3\)
=>x=-3y
b: x=-3y
=>\(y=-\dfrac{1}{3}x\)
Thay x=2 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
Thay x=4 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot4=-\dfrac{4}{3}\)
Theo de ta co:
y1/x1 = y2/x2
=> y1/x1 = y2/x2 = (y1+y2) / (x1+x2) = (-10/3)/(5/3) = -2
=> y1=-2.x1 ; y2=-2.x2
Váy: x liên hệ với y theo công thức y=-2.x hay x = -1/2.ý
Giả sử y và x tỉ lệ thuận theo tỉ hệ số tỉ lệ k; (k ≠ 0)
Khi đó ta có: y1 = k.x1 ; y2 = k.x2
Do đó y1 + y2 = kx1 + kx2 = k(x1 + x2)
Hay 10 = k.2 ⇒ k = 5.
Do đó y = 5x.
* Với x1 = 3 thì y1 = 5.3 =15
Vì x1 + x2 = 2 nên x2 = 2 – x1= 2 - 3 = -1
Vì y1 + y2 = 10 nên y2 = 10 – y1 = 10 -15 = - 5
* Từ đó ta có bảng sau:
x1 = 3 | y1 = 15 |
x2 = -1 | y2 = -5 |
x1 + x2=2 | y1 + y2 = 10 |
a)Vì x và y là hai đại lượng tỉ lệ thuận nên:
y = a.x
=> a = y/x
Do đó: y1/x1 = y2/x2 = y1+y2/x1x2 = 3k^2/4k = 3k/4
=> 3k/4 = y/x
=> y = 3k/4.x
b)Với k = 4 ta có:
y = 3k/4.x
=> y = 3.4/4.x
=> y = 3.x
=> 3 = y/x
Do đó: y1/x1 = 3
=> y1 = x1.3
Và y1+x1 = 5
=> x1.3+x1 = 5
=> 4.x1 = 5
=> x1 = 5/4
Vì x1 = 5/4
=> y1 = 5/4.3 = 15/4
Vậy: y1 = 15/4
x1 = 5/4
cho x và y là hai đại lượng tỉ lệ thuận, biết rằng hai giá trị bất kì x1,x2 của x có tổng bằng 1, hai giá trị tương ứng y1,y2 của y có tổng bằng 5
a, hãy biểu diễn y theo x
b, tính giá trị của x khi y=-4 , y= -1 và 1 phần 2
c, giá trị của y khi x=-4, x=0,5
ht
cho x và y là hai đại lượng tỉ lệ thuận, biết rằng hai giá trị bất kì x1,x2 của x có tổng bằng 1, hai giá trị tương ứng y1,y2 của y có tổng bằng 5
a, hãy biểu diễn y theo x
b, tính giá trị của x khi y=-4 , y= -1 và 1 phần 2