K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(P=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}-1}{a-2\sqrt{a}+1}\)

\(P=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}-1}{a-2\sqrt{a}+1}\)

\(P=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)^2}\)

\(P=\left(\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{1}{\left(\sqrt{a}-1\right)}\)

\(P=\frac{\sqrt{a}+1}{\sqrt{a}}\)

b) Để \(P=\frac{1}{4}\Leftrightarrow\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{1}{4}\)

\(\Rightarrow4\left(\sqrt{a}+1\right)=\sqrt{a}\)

\(\Leftrightarrow3\sqrt{a}+1=0\)

<=> a ko có giá trị

P/s tha m khảo nha

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

12 tháng 12 2015

\(=\left(\frac{\sqrt{a}+a+\sqrt{a}-a}{1-a}\right)\div\frac{\sqrt{a}}{a-1}\)

\(=\frac{2\sqrt{a}}{1-a}\div\frac{\sqrt{a}}{a-1}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{2\left(\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)}\)\(=-2\)

\(Với:a>0;a\ne0\)

12 tháng 12 2015

Rút gọn \(C=-2\)

TICK NHA BẠN

3 tháng 9 2018

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\).\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(\left[\left(\frac{\sqrt{a}}{2}\right)^2-2\frac{\sqrt{a}}{2}\frac{1}{2\sqrt{a}}+\left(\frac{1}{2\sqrt{a}}\right)^2\right]\).\(\left[\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{a-1}\right]\)

=\(\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1\right)^2}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)^2}{a-1}\right]\)

=\(\left(\frac{a^2}{4a}-\frac{2a}{4a}+\frac{1}{4a}\right)\).\(\left[\frac{\left[\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\right]\cdot\left[\left(\sqrt{a}-1\right)+\left(\sqrt{a}+1\right)\right]}{a-1}\right]\)

=\(\left(\frac{a^2-2a+1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1-\sqrt{a}+1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right]\)

=\(\frac{\left(a-1\right)^2}{1}\).\(\frac{-4\sqrt{a}}{a-1}\)

=\(\frac{-\left(a-1\right)}{1}\)= - a + 1

hok tốt 

3 tháng 5 2018

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)

\(A=\)\(\left[\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right]\left[\frac{a+1}{\sqrt{a}}\right]\)

\(A=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\)  \(\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\left(a+1\right)}{a-1}\)

ta có \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(a=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(a=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(a=2\left(16-15\right)\)

\(a=2\)

khi đó \(A=\frac{4.2.\left(2+1\right)}{2-1}=8.3=24\)

vậy.....

23 tháng 7 2018

Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao

23 tháng 7 2018

M ngon m làm đi nói nhiều