K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

27 tháng 1 2020

1

\(x^2-4mx+4m^2-2=0\)

\(\Leftrightarrow\left(x-2m\right)^2-2=0\)

\(\Leftrightarrow\left(x-2m+\sqrt{2}\right)\left(x-2m-\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2m-\sqrt{2}\\x=2m+\sqrt{2}\end{cases}}\) 

Vậy............

1 tháng 4 2017

Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.

Câu 1: Mình làm mẫu câu a thôi nhé.

a/ \(x^2-2\sqrt{3}x-6=0\)

( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )

\(\Delta=b^2-4ac\)

    \(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)

    \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)

Vậy:..

Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)

( a = 1; b = -2(2m+1); c = 4m^2 + 2 )

\(\Delta=b^2-4ac\)

    \(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)

     \(=4\left(4m^2+4m+1\right)-16m^2-8\)

     \(=16m^2+16m+4-16m^2-8\)

     \(=16m-4\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)

31 tháng 3 2017

ko hỉu

6 tháng 6 2019

1) Ta có : \(\Delta'=b'^2-ac=\left(-m\right)^2-1\cdot\left(m-2\right)=m^2-m+2\)

\(=m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt luôn có 2 nghiệm phân biệt

2) Phương trình luôn có 2 nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{m+\sqrt{\Delta'}}{1}=m+\sqrt{\Delta'}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{m-\sqrt{\Delta'}}{1}=m-\sqrt{\Delta'}\end{cases}}\)

Theo đề bài : \(x_1-x_2=m+\sqrt{\Delta'}-m+\sqrt{\Delta'}=2\sqrt{5}\)

\(\Leftrightarrow2\sqrt{\Delta'}=2\sqrt{5}\)

\(\Leftrightarrow\sqrt{\Delta'}=\sqrt{5}\)

\(\Leftrightarrow\Delta'=5\)

\(\Leftrightarrow m^2-m+2=5\)

\(\Leftrightarrow m^2-m-3=0\)

\(\Leftrightarrow m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2=\frac{13}{4}=\left(\frac{\pm\sqrt{13}}{2}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{13}+1}{2}\\m=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

Vậy....

6 tháng 6 2019

phần 2 bạn sai rồi phong ơi

3 tháng 6 2018

Để 2 pt \(x^2+ax+bc=0\)(1) 

         và \(x^2+bc+c=0\)  (2)

thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)

Gọi 2 nghiệm của pt (1) là \(x_0\)\(x_1\)và 2 nghiệm của pt (2) là \(x_0\)\(x_2\)

( Nghiệm chung là \(x_0\))

Theo Vi-et , ta có :

\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và    \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)

Suy ra :

\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)

Vì \(x_1=b\)và  \(x_0.x_1=bc\)nên \(x_0=c\)

Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)

                                                                                   Mà \(x_1.x_2=ab\)

Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)