Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ca+x^2\)
\(=4x^2-2ax-2bc-2cx+ab+bc+ca\)
\(=4x^2-2\left(a+b+c\right)x+ab+bc+ca\)
với \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c\Rightarrow2x=a+b+c\)
\(\Rightarrow M=\left(a+b+c\right)^2-\left(a+b+c\right)^2+ab+bc+ca\)
\(=ab+bc+ca\)
(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) + x2
= (x2-ax-bx+ab) + (x2-bx-cx+bc) + (x2-cx-ax+ac) + x2
= 4x2 - 2ax - 2bx + ab + bc + ac
Thay a+b+c = 2x, ta được:
M = 4x2 - 2x(a+b+c) + ab + bc + ac
M = 4x2 - 2x.2x + ab + bc + ac
M = ab + bc + ac
Vậy => đcpcm
=x2-bx-ax+ab+x2-cx-bx+bc+x2-cx-ax+x2
=(x2+x2+x2+x2)-(ax+bx+cx+ax+bx+cx)+ab+bc+ca
=4x2-2(a+b+c)x+ab+bc+ca
Thay x=\(\frac{1}{2}\)(a+b+c) vào M ta đc:
M=4.\(\frac{1}{4}\)(a+b+c)2-2(a+b+c).\(\frac{1}{2}\)(a+b+c)+ab+bc+ca
=(a+b+c)2-(a+b+c)2+ab+bc+ca
=ab+bc+ca