Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử tam giác đã cho là tam giác ABC có BC là 45 cm
Vì độ dài 2 cạnh góc vuông tỉ lệ với 3 và 4 nên ta đặt AB là 3x
Ac là 4x
Áp dụng định lý Py-ta-go
BC 2=Ab 2+Ac 2
452=(3x)2+(4x)2
2025=9x2+16x2
2025=25x2
X 2=81
X=9
Ab=9.3=27(cm)
Ac=9.4(cm)
Gọi độ dài các cạnh góc vuông lần lượt là a, b ( a,b > 0 )
Theo định lí Pytago ta có: \(a^2+b^2=45^2=2025\)
Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\)\(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{2025}{25}=81\)
\(\Rightarrow a^2=81.9=729\)\(\Rightarrow a=\pm27\)
\(b^2=81.16=1296\)\(\Rightarrow b=\pm36\)
mà \(a,b>0\)\(\Rightarrow a=27\); \(b=36\)
Vậy độ dài các cạnh góc vuông lần lượt là 27cm và 36cm
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)
VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)
VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45
ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ
\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 3k và 4k với k>0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 5k, do đó 5k = 20
=> k = 4.
Từ đó độ dài các cạnh góc vuông lần lượt là 12 cm và 16 cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải :
Gọi độ dài hai cạnh góc vuông lần lượt là a, b và độ dài cạnh huyền là c.
Theo đề, ta có :
a/b=4/3 => a = 4/3.b
Áp dụng định lý Py -ta-go vào tam giác vuông, ta có :
a^2 + b^2 = c^2
(4/3b)^2 + b^2 = 5^2
(4/3)^2 . b^2 + b^2 = 25
(16/9 +1 ). b^2 = 25
25/9 . b^ 2= 25
b^2 = 25 : 25 /9 = 25 . 9/25
b^2 = 9
=> b = 3 (cm)
Có a= 4/3 .b
=> a = 4/3 . 9
a= 12 (cm)
Vậy độ đài hai cạnh góc vuông lần lượt là 3 (cm), 12 (cm)