\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)CMR trong 3 phan thuc o...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

tich minh cho minh len thu 8 tren bang sep hang cai

27 tháng 1 2016

ai giai giup minh voi

20 tháng 12 2018

ĐKXĐ : \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)

a) \(A=\frac{x^2-10x+25}{x^2-5x}\)

\(A=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)

\(A=\frac{x-5}{x}\)

b) Để phân thức bằng 0 thì \(x-5=0\Leftrightarrow x=5\)

Mà ĐKXĐ \(x\ne5\)=> ko có giá trị của x để phân thức bằng 0

c) Để phân thức bằng 0 thì :

\(\frac{x-5}{x}=\frac{5}{2}\)

\(2x-10=5x\)

\(-10=3x\)

\(x=\frac{-3}{10}\)

20 tháng 12 2018

a,\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)

b,Để phân thức có giá trị bằng 0 thì \(\frac{x-5}{x}=0\)

Mà: Theo điều kiện ta có: \(x\ne0\)

nên để: \(\frac{x-5}{x}=0\)thì: \(x-5=0\Leftrightarrow x=5\)

c,Để phân thức có giá trị bằng 5/2 thì:

\(\frac{x-5}{x}=\frac{5}{2}\)

\(\Leftrightarrow2\left(x-5\right)=5x\)

\(\Leftrightarrow2x-10=5x\)

\(\Leftrightarrow2x-5x=10\)

\(\Leftrightarrow-3x=10\Rightarrow x=-\frac{10}{3}\)

=.= hk tốt!!

Vào địa chỉ này: 

https://olm.vn/hoi-dap/question/1100452.html 

Câu hỏi người ta đã hỏi rồi! 

Bạn chú ý tìm câu hỏi trước khi đặt câu hỏi

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm

29 tháng 8 2016

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )

\(\Leftrightarrow\) ĐPCM

6 tháng 7 2016

Trả lời hộ mình đi