Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{â+b+c}{2+3+4}=\dfrac{45}{9}=5\)
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
a2=b3=c4a2=b3=c4 và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a2=b3=c4=â+b+c2+3+4=459=5a2=b3=c4=â+b+c2+3+4=459=5
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
Gọi độ dài 3 cạnh lần lượt là : 2k;3k;4k
Đặt p=2k+3k+4k2=9k2
Áp dụng công thức tính đường cao ta có:
ha=2.p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√a
Ta tính được ha theo k
bạn chỉ cần viết len google là Câu hỏi của buithịvânthành - Toán lớp 7 - Học toán với OnlineMath
Gọi độ dài 3 cạnh của tam giác đó là x;y;z (x;y;z >0; x:y:z=2:3:4 ) ; ba chiều cao tương ứng là a;b;c
Đặt x = 2*t ; y = 3*t ; z = a*t
Gọi S là diện tích tam giác đó
2S = x*a = y*b = z*c
=>a*2*t = b*3*t = c*4*t
=>2*a = 3*b = 4*c
=> a/6 = b/4 = c/3
Vậy ba chiều cao tương ứng tỉ lệ với 6;4;3
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;