K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Ta có 

a2+b2+c2 = ab+bc+ca

<=> 2(a2+b2+c2)= 2(ab+bc+ca)

<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c- 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

Thế vào pt thứ (2) ta được

a8 + b8 + c8 = 3

<=> 3a8 = 3

<=> a8 = 1

<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)

Từ (3) => P = 1 + 1 - 1 = 1

Từ (4) => P = - 1 + 1 + 1 = 1

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
2 tháng 4 2021

Ta có:

 \(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)

Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)

6 tháng 11 2021

\(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=9-2\cdot4=1\)

Do đó \(K=1+2021=2022\)

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

NV
12 tháng 12 2020

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

10 tháng 8 2021

Ta có

$$a^2+b^2+c^2-ab-bc-ca=0,$$

hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$

Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$

Vậy ta có điều cần chứng minh.

 

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

22 tháng 11 2018

Vì ab + bc + ca = 1 nên

a 2 + 1 = a 2 + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)

b 2 + 1 = b 2 + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)

c 2 + 1 = c 2 + ab + bc + ca = ( c 2 + bc) + (ab + ac)

= c(c + b) + a(b + c) = (a + c)(b + c)

Từ đó suy ra ( a 2   +   1 ) ( b 2   +   1 ) ( c 2   +   1 )

= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)

=   ( a   +   c ) 2 ( a   +   b ) 2 ( b   +   c ) 2

Vậy ( a 2   +   1 ) ( b 2   +   1 ) ( c 2   +   1 )   =   ( a   +   c ) 2 ( a   +   b ) 2 ( b   +   c ) 2

Đáp án cần chọn là: D

21 tháng 1 2017

Xét hiệu:

a2 + b2 + c2 - ab - bc - ca

1 2 (2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)

1 2 [(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]

= 1 2 [(a - b)2 + (b - c)2 + (c - a)2] ≥ 0

(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c)

Nên a2 + b2 + c2 ≥ ab + bc + ca.

Dấu “=” xảy ra khi a = b = c.

Đáp án cần chọn là: B