\(B=\frac{x^2-6x+14}{x^2-6x+12}\)

Tìm GTLN của B

ai nhanh nhát mik tik nh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(B=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)

ta có: \(x^2-6x+12=x^2-2.3.x+3^2+4=\left(x-3\right)^2+4\ge4\)

để Bmax => \(\left(\frac{2}{x^2-6x+12}\right)max\Rightarrow x^2-6x+12min\)và lớn hơn 0 vì 2>0

\(\left(x-3\right)^2+4\) \(\ge\)4

dấu = xảy ra khi x-3=0

=> x=3

Vậy \(MaxB=\frac{3}{2}\)khi x=3

NV
23 tháng 6 2019

\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được

24 tháng 6 2019

ở 12 là dấu cộng bạn ạ

24 tháng 6 2019

1, B=\(\frac{3}{4x^2-4x+5}\)

=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)

=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)

Để B=3 thì : (2x-2)2=0

\(\Leftrightarrow2x-2=0\)

\(\Leftrightarrow x=1\)

Vậy Max B =3 \(\Leftrightarrow x=1\)

24 tháng 6 2019

phần b nữa nha

28 tháng 12 2019

\(B=\frac{x^2-6x+14}{x^2-6x+12}\)

\(B=\frac{x^2-6x+12+2}{x^2-6x+12}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}\)

\(B=1+\frac{2}{\left(x-3\right)^2+3}\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

28 tháng 12 2019

B=\(\frac{x^2-6x+14}{x^2-6x+12}\)

=\(\frac{x^2-6x+9+3+2}{x^2-6x+9+3}\)

=\(\frac{\left(x^2-6x+9\right)+3+2}{\left(x^2-6x+9\right)+3}\)

=\(\frac{\left(x-3\right)^2+3+2}{\left(x-3\right)^2+3}\)

=\(\frac{\left(x-3\right)^2+3}{\left(x-3\right)^2+3}+\frac{2}{\left(x-3\right)^2+3}\)

=1+\(\frac{2}{\left(x-3\right)^2+3}\)

*Ta có:(x-3)2 \(\ge\) 0;với mọi x;cộng 3 vào 2 vế

\(\Rightarrow\)(x-3)2+3 \(\ge\) 0+3;với mọi x

\(\Rightarrow\)(x-3)2+3 \(\ge\) 3;với mọi x

\(\Rightarrow\)\(\frac{2}{\left(x-3\right)^2+3}\) \(\ge\) 0;với mọi x;lấy hai vế cộng cho1

\(\Rightarrow\)\(1+\frac{2}{\left(x-3\right)^2+3}\)\(\ge\)1+0;với mọi x

Vậy .................................

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

30 tháng 7 2018

a) Đặt  \(A=16x^2-6x+3\)

\(A=\left(16x^2-6x+\frac{9}{16}\right)+\frac{39}{16}\)

\(A=\left(4x-\frac{3}{4}\right)^2+\frac{39}{16}\)

Do  \(\left(4x-\frac{3}{4}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge\frac{39}{16}\)

Dấu "=" xảy ra khi :  

\(4x-\frac{3}{4}=0\Leftrightarrow4x=\frac{3}{4}\Leftrightarrow x=\frac{3}{16}\)

Vậy ...

30 tháng 7 2018

b) Đặt  \(B=\frac{5}{3}x^2-x+1\)

\(\frac{5}{3}B=\frac{25}{9}x^2-\frac{5}{3}x+\frac{5}{3}\)

\(\frac{5}{3}B=\left(\frac{25}{9}x^2-\frac{5}{3}x+\frac{1}{4}\right)+\frac{17}{12}\)

\(\frac{5}{3}B=\left(\frac{5}{3}x-\frac{1}{2}\right)^2+\frac{17}{12}\)

Do  \(\left(\frac{5}{3}x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\frac{5}{3}B\ge\frac{17}{12}\Leftrightarrow B\ge\frac{17}{20}\)

Dấu "=" xảy ra khi :  

\(\frac{5}{3}x-\frac{1}{2}=0\Leftrightarrow\frac{5}{3}x=\frac{1}{2}\Leftrightarrow x=\frac{3}{10}\)

Vậy ...

23 tháng 6 2017

a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.

\(x^2-2x3+3^2-8\)

\(\left(x-3\right)^2-8\ge-8\)

Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)

Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3

Thay x = 3 vào biểu thức a ta được:

\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)

Vậy GTLN của A là -5/8

7 tháng 8 2018

vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN                                                                     mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\)                                                                                             =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\)            vậy GTNN  \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)

1 tháng 5 2019

\(A=x-x^2\)

\(A=-\left(x^2-x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

\(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(A=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Còn lại tương tự

6 tháng 5 2019

làm hộ câu c)

12 tháng 3 2018

A + 1 = x^2+1+6x+8/x^2+1

         = x^2+6x+9/x^2+1

         = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" <=> x+3=0 <=> x=-3

Vậy ............

Tk mk nha