\(\frac{\sqrt{x+1}}{\sqrt{x-3}}\). Tìm số nguyên x để B có giá trị là một số nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

ĐK: \(x\ge-1;x\ne3\)

\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0

Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.

Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)

Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)

Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)

Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.

30 tháng 10 2017

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
3 tháng 6 2016

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để B nguyên thì\(\frac{4}{\sqrt{x}-3}\) nguyên => \(\sqrt{x}-3\) phải là ước của 4.Đến đây thì bài toán dể rồi.

3 tháng 6 2016

Ta có: \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để B nguyên thì \(\frac{4}{\sqrt{x}-3}\) nguyên  <=>  \(\left(\sqrt{x}-3\right)\in\text{Ư}\left(4\right)\)

30 tháng 5 2016

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

8 tháng 2 2022

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}}=1+\frac{4}{\sqrt{x}-3}\)

Để A là 1 số nguyên dương thì:

\(\hept{\begin{cases}\frac{4}{\sqrt{x}-3}>-1\\\sqrt{x}-2\inƯ\left(4\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{\sqrt{x}-3}+1>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x}+1}{\sqrt{x}-3}>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x-3}\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)

\(\Rightarrow\sqrt{x}-3\in\left\{1;2;4\right\}\)

Với \(\hept{\begin{cases}\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\\\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\\\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\end{cases}}\Rightarrow x\in\left\{16;25;49\right\}\)

8 tháng 2 2022

cảm ơn bn mk làm xong rồi

10 tháng 11 2016

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)

 

 

 

18 tháng 1 2018

Ta có : \(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)

Mà B nguyên nên \(\frac{5}{\sqrt{x}-2}\in Z\)hay \(\left(\sqrt{x}-2\right)\inƯ\left(5\right)\)

\(\sqrt{x}-2\)1-15-5
\(\sqrt{x}\)317-3
 \(x\)9149 \(\varnothing\)

Vậy \(x\in\left(1;9;49\right)\)

18 tháng 1 2018

\(B=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)  \(ĐKXĐ:x\ne4;x\ge0\)

\(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)

\(B=1+\frac{5}{\sqrt{x}-2}\)

để \(B\in Z\)thì \(x\in Z\)

mà \(1\in Z\forall R\) nên \(\frac{5}{\sqrt{x}-2}\in Z\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{\pm1;\pm5\right\}\)

mà \(x\ge0\) nên \(\sqrt{x}-2\in\left\{1;5\right\}\)

+  \(\sqrt{x}-2=1\)  \(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)  (thỏa mãn )

\(\sqrt{x}-2=5\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\) ( thỏa mãn)

vậy \(x\in\left\{9;49\right\}\) thì \(B\in Z\)