Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi r và h lần lượt là bán kính đáy và độ dài đường cao hình nón
Thể tích hình nón :
Vậy chọn đáp án D
Vì hai vệ tinh cùng cách mặt đất 230 km nên tam giác AOB cân tại O.
Ta có: OA = R + 230
= 6370 + 230 = 6600 (km)
Trong tam giác AOB ta có: OH ⊥ AB
Suy ra: HA = HB = AB/2 = 2200/2 = 1100 (km)
Áp dụng định lí Pi-ta-go vào tam giác vuông AHO, ta có:
O A 2 = A H 2 + O H 2
Suy ra: O H 2 = O A 2 - A H 2
Suy ra:
OH = ≈ 6508 (km)
Vì OH > R nên hai vệ tinh nhìn thấy nhau.
Điểm nhìn tối đa T là tiếp điểm của tiếp tuyến kẻ từ mắt đến bề mặt Trái Đất (như hình vẽ)
Xét hai tam giác MTA và MBT,ta có:
(hệ quả góc giữa tiếp tuyến và dây cung)
Suy ra ∆ MTA đồng dạng ∆ MBT
⇒ MT/MA = MB/MT => M T 2 = MA.MB
= MA (MA + 2R)
MA là chiều cao của đỉnh núi bằng 1km
Thay số ta có: M T 2 =1.(1 + 2.6400)=12801
Suy ra : MT ≈ 113,1(km)
Chọn (D)