K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

TH1: \(\left\{{}\begin{matrix}2x-y=1\\z^2-z+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-1\\z^2-z-6=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k-1\\\left[{}\begin{matrix}z=3\\z=-2\end{matrix}\right.\end{matrix}\right.\) với \(k\in Z\)

TH2: \(\left\{{}\begin{matrix}2x-y=7\\z^2-z+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k-7\\\left[{}\begin{matrix}z=0\\z=1\end{matrix}\right.\end{matrix}\right.\) với \(k\in Z\)

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:
\(A=\left(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}\right)\left(\frac{1}{y-z}+\frac{1}{z-x}+\frac{1}{x-y}\right)-\frac{x}{(y-z)(z-x)}-\frac{x}{(y-z)(x-y)}-\frac{y}{(z-x)(x-y)}-\frac{y}{(z-x)(y-z)}-\frac{z}{(x-y)(y-z)}-\frac{z}{(x-y)(z-x)}\)

\(=0-\frac{x(x-y)+x(z-x)+y(y-z)+y(x-y)+z(z-x)+z(y-z)}{(x-y)(y-z)(z-x)}\)

\(=0-\frac{x^2+xz+y^2+xy+z^2+zy-(xy+x^2+yz+y^2+zx+z^2)}{(x-y)(y-z)(z-x)}=0-\frac{0}{(x-y)(y-z)(z-x)}=0\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?

9 tháng 5 2021

Ko bạn

 

7 tháng 11 2015

Côsi: \(\sqrt{x\left(y+z\right)}=\frac{1}{2\sqrt{2}}.2.\sqrt{2x}.\sqrt{y+z}\le\frac{1}{2\sqrt{2}}\left(2x+y+z\right)\)

\(\Rightarrow\frac{1}{\sqrt{x\left(y+z\right)}}\ge\frac{2\sqrt{2}}{2x+y+z}\)

Tương tự các cái kia.

\(\Rightarrow VT\ge2\sqrt{2}\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)

\(\ge2\sqrt{2}.\frac{9}{2x+y+z+2y+z+x+2z+x+y}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)

7 tháng 11 2015

\(\sum\frac{1}{\sqrt{x\left(y+z\right)}}=\sum\frac{\sqrt{2}}{\sqrt{2x}.\sqrt{y+z}}\ge\sum\frac{2\sqrt{2}}{2x+y+z}\ge2\sqrt{2}.\frac{9}{\sum\left(2x+y+z\right)}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$

$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$

$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$

$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$

$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$

$\Rightarrow \text{VT}\geq \frac{27}{4}$

Dấu "=" xảy ra khi $x=y=z>0$

10 tháng 8 2023

Áp dụng BĐT Bunhiacopxky:

VT(12+12+12)≥(1+��+�+1+��+�+1+��+�)2

⇔3VT≥(3+��+�+��+�+��+�)2

=[3+�2��+��+�2��+��+�2��+��]2

≥[3+(�+�+�)22(��+��+��)]2

≥[3+3(��+��+��)2(��+��+��)]2=814

⇒VT≥274

Dấu "=" xảy ra khi �=�=�>0

20 tháng 2 2021

cái chỗ math processing error kia là \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\)

NV
14 tháng 2 2022

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)