K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Ta có

\(\frac{1}{1+x+xy}=\frac{1}{1+x+\frac{1}{z}}=\frac{z}{z+xz+1}\)

\(\frac{1}{1+y+yz}=\frac{1}{1+\frac{1}{xz}+yz}=\frac{xz}{xz+1+z}\)

Từ đó ta có

A = \(\frac{z}{1+z+xz}+\frac{xz}{1+z+xz}+\frac{1}{1+z+xz}\)

\(\frac{1+z+xz}{1+z+xz}=\:1\)