\(a^3+b^3+c^3-3abc=1\)  tìm gtnn của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)

\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)

\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)

\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)

\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)

\(\Rightarrow B\ge1\)

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

26 tháng 12 2019

Dự đoán Max P = 81 nên ta chứng minh: \(P\le81=\left(a+b+c\right)^4\)

Ta có: \(P=a^4+b^4+c^4-3abc\le a^4+b^4+c^4+78abc\)

\(=a^4+b^4+c^4+26\left(a+b+c\right)abc\)

Vậy ta chứng minh: \(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

SOS là ra rồi :DD

1 tháng 1 2020

Chứng minh:\(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

Giả sử \(a=max\left\{a,b,c\right\}\).Xét hiệu: 

vK9kNQC.pngĐẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị.

2 tháng 7 2020

Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)

Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)

Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)

Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)

Vậy Min P=1

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)

2 tháng 10 2019

Câu hỏi hơi xàm

Do a;b;c không âm \(\Rightarrow\frac{a}{a+1}\ge0\) ; \(\frac{b}{b+1}\ge0\)\(\frac{c}{c+1}\ge0\)

\(\Rightarrow T\ge0\)

\(T_{min}=0\) khi \(a=b=c=0\)