K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)

Áp dụng BĐT BSC:

\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)

\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)

Ta cần chứng minh: 

\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)

\(\Rightarrow dpcm\)

Đẳng thức xảy ra khi \(a=b=c=1\)

21 tháng 3 2021

Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:

\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)

\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

14 tháng 4 2021

undefined

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta có:
\(\text{VT}=1-\frac{2ab^2}{2ab^2+1}+1-\frac{2bc^2}{2bc^2+1}+1-\frac{2ca^2}{2ca^2+1}\)

\(\text{VT}=3-\underbrace{\left( \frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)}_{N}\) (1)

Áp dụng BĐT Am-Gm:

\(2ab^2+1=ab^2+ab^2+1\geq 3\sqrt[3]{a^2b^4}\)

\(\Rightarrow \frac{2ab^2}{2ab^2+1}\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}=\frac{2}{3}\sqrt[3]{ab^2}\)

Tương tự với các phân thức còn lại và cộng theo vế, suy ra :

\(N\leq \frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

Áp dụng BĐT AM-GM:

\(\sqrt[3]{ab^2}\leq \frac{a+b+b}{3}\); \(\sqrt[3]{bc^2}\leq \frac{b+c+c}{3}; \sqrt[3]{ca^2}\leq \frac{c+a+a}{3}\)

\(\Rightarrow N\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)\)

\(\Leftrightarrow N\leq \frac{2}{3}(a+b+c)=2\) (2)

Từ \((1),(2)\Rightarrow \text{VT}\geq 1\)

Dấu bằng xảy ra khi \(a=b=c=1\)

11 tháng 11 2017

Áp dụng BĐT B.C.S ta có :

\(\dfrac{1}{2ab^2+1}+\dfrac{1}{2bc^2+1}+\dfrac{1}{2ca^2+1}\ge\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\)

Ta phải chứng minh \(\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\ge1\)

\(\Leftrightarrow2ab^2+2bc^2+2ac^2+3\le9\) do a,b,c dương nên chia cả hai vế cho abc ta được: \(2\left(a+b+c\right)+\dfrac{3}{abc}\le\dfrac{9}{abc}\)

\(\Leftrightarrow6\le\dfrac{6}{abc}\Leftrightarrow abc\le1\) Bất đẳng thức cuối luôn đúng thật vậy:

áp dụng BĐT AM - GM :

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)

\(\Rightarrowđpcm\)

NV
6 tháng 3 2021

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

10 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{ab+a+2}=\dfrac{1}{ab+1+a+1}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{abc}{ab+abc}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{abc}{ab\left(c+1\right)}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{c+1}+\dfrac{1}{a+1}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{bc+b+2}\le\dfrac{1}{4}\left(\dfrac{a}{a+1}+\dfrac{1}{b+1}\right);\dfrac{1}{ca+c+2}\le\dfrac{1}{4}\left(\dfrac{b}{b+1}+\dfrac{1}{c+1}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

10 tháng 6 2017

nhấn vào!!!!!

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((a+b+1)(a+b+c^2)\geq (a+b+c)^2\Rightarrow a+b+1\geq \frac{(a+b+c)^2}{a+b+c^2}\)

\(\Rightarrow \frac{1}{a+b+1}\leq \frac{a+b+c^2}{(a+b+c)^2}\)

Tương tự cho các phân thức còn lại, suy ra:

\(1\leq \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}\leq \frac{a+b+c^2}{(a+b+c)^2}+\frac{b+c+a^2}{(a+b+c)^2}+\frac{c+a+b^2}{(a+b+c)^2}\)

\(\Leftrightarrow 1\leq \frac{2(a+b+c)+a^2+b^2+c^2}{(a+b+c)^2}\)

\(\Leftrightarrow (a+b+c)^2\leq 2(a+b+c)+a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac\leq a+b+c\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$