Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=9
a^2+b^2+c^2=53
A=ab+ac+bc
2A=2(ab+ac+bc)
(a+b+c)^2=81
a^2+b^2+c^2+2(ab+ac+bc)=81
53+2A=81
2A=28
A=14
Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.
Ta có : 53 = 52+32+12
5 + 3 + 1 = 9
Tổng cần tìm : (5.3)+(5.1)+(3.1)=15+5+3=23
a,
x^2=\(\left(999...9\right)^2=\left(10^{2017}-1\right)^2=9999...8000...1\) (2016 chu so 9 va 0)
xy=\(999...9.888...8=111...0888...89\) (2016 chu so 1 va 8)
ta thay tong cac chu so cua xy, x^2 deu la 2017.9 nen bang nhau
neu bn thac mac lam sao co cong thuc tren thi bn co the chung minh dua vao \(999...9=10^n-1\) (n chu so 9)
b, sau luot thu nhat tren bang se xuat hien 3 so la 2,3,2 ( 2 so chan va 1 so le)
Ta co nhan xet rang
chan + chan-1 = le
le+chan -1 = chan
tu nhan xet nay ta thay ke tu luot thu 2 bat ke ta chon so nao 2 hoac 3 ( noi tong quat hon la 1 so chan hoac 1 so le ) thi ket qua nhan duoc la ta dc 3 so moi trong do co 2 so chan va 1 so le
Ma de bai cho 27,1985,2017 deu la 3 so le nen KHONG the nhan duoc ket qua nay neu bat dau tu 3 so 2,2,2
Chuc ban hoc tot
P/s Mik giai thich co cho nao kho hieu mong mn thong cam
Gọi số cần tìm là : \(\overline{ab}\left(a\ne0\right)\)
Theo đề ra ta có:
\(\overline{ab}\left(a+b\right)=a^3+b^3\)
\(\Leftrightarrow10a+b=a^2-ab+b^2=\left(a+b\right)^2-3ab\)
\(\Leftrightarrow9a+3ab=\left(a+b\right)^2-\left(a+b\right)\)
\(\Leftrightarrow3a\left(a+b\right)=\left(a+b\right)\left(a+b-1\right)\)
Vì (a+b)và (a+b−1) là hai số nguyên tố cùng nhau cho nên:
TH1: \(\hept{\begin{cases}a+b=3a\\a+b-1=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=8\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+b-1=3a\\a+b=3+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=7\end{cases}}\)
Vậy số cần tìm là 48 hoặc 37
Gọi 3 số đó là a,b,c thì a + b + c = 0
+ \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(=3\cdot48=144\)
thank you