Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm đại nha!
Chuyển vế qua ta có bđt tương đương
\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)
Nhiệm vụ là đi CM Bđt trên
Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)
trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)
\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)
\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)
hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)
Tới đây cần chứng minh (3) đúng
Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)
Xét \(S_3-S_2=.....>0\)(tương tự làm nha)
Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)
Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng
Suy ra (2) và (1) cũng đúng
Vậy .........
Không biết đúng không
bạn làm nhầm rồi
Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)
=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)
Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)
=> (1) đúng
=> BĐTđược chứng minh
b)Đặt \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).
\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).
\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).
\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).
Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).
\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).
\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).
\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(A\ge\frac{15}{2}\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).
Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).
a) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
a) \(a\le b\) \(\Rightarrow-a\ge-b\)
\(\Rightarrow-\frac{2}{3}a\ge-\frac{2}{3}b\) ( theo liên hệ giữa thứ tự và phép nhân )
\(\Rightarrow-\frac{2}{3}a+4\ge-\frac{2}{3}b+4\)
b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow a=b\)