Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).
\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).
Ta có:
\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)
\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).
Ta có:
\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).
\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).
\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).
\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).
\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).
Chứng minh tương tự, ta được:
\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).
Chứng minh tương tự, ta được:
\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).
\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).
\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)
\(\left(4\right)\).
Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).
\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)
(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).
\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(P\ge\frac{\sqrt{5}}{3}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).
Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
Ta có:
\(2x^2+xy+2y^2=x^2+y^2+\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2\)
\(\ge\frac{2\left(x+y\right)^2}{4}+\frac{3\left(x+y\right)^2}{4}=\frac{5\left(x+y\right)^2}{4}\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\). Tương tự ta có:
\(\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right);\sqrt{2z^2+xz+2x^2}\ge\frac{\sqrt{5}}{2}\left(x+z\right)\)
\(\Rightarrow M\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(x+z\right)\)
\(=\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho mình hối tại sao đẳng thức sảy ra x=y=z=1/3 vậy
Vì \(x+y+z=2\)
Ta có \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)
Tương tự \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\) và \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)
Do đó \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)
Vậy \(P\le4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\) và x+y+z=2 \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\) Thực vậy bất đẳng thức cần chứng minh tương đương với
\(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)
Quay lại bài toán, áp dụng nhận xét ta được
\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)
Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\Rightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{\left(x+y\right)^2}{2}+\dfrac{3\left(x^2+y^2\right)}{2}}\)
\(\ge\sqrt{\dfrac{5\left(x+y\right)^2}{4}}=\dfrac{\sqrt{5}\left(x+y\right)}{2}\). Tương tự ta có:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}\left(y+z\right)}{2};\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}\left(x+z\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{\sqrt{5}\left(x+y\right)}{2}+\dfrac{\sqrt{5}\left(y+z\right)}{2}+\dfrac{\sqrt{5}\left(x+z\right)}{2}\)
\(=\dfrac{\sqrt{5}\cdot2\left(x+y+z\right)}{2}=\dfrac{\sqrt{5}\cdot2}{2}=\sqrt{5}=VP\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(xy+yz+zx\le3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
\(P=\frac{1}{\sqrt{x^2+y^2+x^2+xy}}+\frac{1}{\sqrt{y^2+z^2+y^2+yz}}+\frac{1}{\sqrt{z^2+x^2+z^2+zx}}\)
\(P\le\frac{1}{\sqrt{x^2+3xy}}+\frac{1}{\sqrt{y^2+3yz}}+\frac{1}{\sqrt{z^2+3zx}}=\frac{4}{2\sqrt{4x\left(x+3y\right)}}+\frac{4}{2\sqrt{4y\left(y+3z\right)}}+\frac{1}{2\sqrt{4z\left(z+3x\right)}}\)
\(P\le4\left(\frac{1}{4x+x+3y}+\frac{1}{4y+y+3z}+\frac{1}{4z+z+3x}\right)=4\left(\frac{1}{5x+3y}+\frac{1}{5y+3z}+\frac{1}{5z+3x}\right)\)
\(P\le\frac{4}{64}\left(\frac{5}{x}+\frac{3}{y}+\frac{5}{y}+\frac{3}{z}+\frac{5}{z}+\frac{3}{x}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{3}{2}\)
\(P_{max}=\frac{3}{2}\) khi \(x=y=z=1\)
chứng minh \(\ge\)\(\sqrt{5}\), mk viết thiếu mất nha
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
Khos quas