K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

áp dụng BĐT xy+yz+zx<= x2+y2+z2  chia 350 đảo dấu thì cùng chiều

đặt 1/(x2+y2+z2) ra làm nhân tử chung rồi 350+386=736

rồi áp dụng BĐT Cô-si SVAC-XƠ

thì x2+y2+z2<= (x+y+z)2/3 = 1/3

rồi chia 1 cho 1/3 rồi 3.736=2208>2015

NV
3 tháng 11 2019

\(P=\frac{\sqrt{386}^2}{x^2+y^2+z^2}+\frac{\sqrt{700}^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(\sqrt{386}+\sqrt{700}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{386}+\sqrt{700}\right)^2\)

Bây giờ chỉ cần chứng minh:

\(\left(\sqrt{386}+\sqrt{700}\right)^2>2015\)

Ta có \(\left(\sqrt{386}+\sqrt{700}\right)^2>\left(\sqrt{361}+\sqrt{676}\right)^2=2025>2015\) (đpcm)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

28 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engelta có:

\(VT=\frac{700}{2\left(xy+yz+xz\right)}+\frac{386}{x^2+y^2+z^2}\)\(=\frac{\sqrt{700}^2}{2\left(xy+yz+xz\right)}+\frac{\sqrt{386}^2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{\left(x+y+z\right)^2}\)

\(=\left(\sqrt{700}+\sqrt{386}\right)^2>2015\left(x+y+z=1\right)\)