K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

21 tháng 7 2015

Ta có : 

\(\frac{\left(b-c\right)}{\left(a-b\right)\left(a-c\right)}\)

 \(=\frac{\left(b-a+a-c\right)}{\left(a-b\right)\left(a-c\right)}\)

  \(=\frac{\left(b-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}\)

\(=\frac{1}{\left(a-b\right)}+\frac{1}{\left(c-a\right)}\)

 Tương tự

  \(\frac{\left(c-a\right)}{\left(b-c\right)\left(b-a\right)}\)

\(=\frac{1}{\left(b-c\right)}+\frac{1}{\left(a-b\right)}\)

\(\frac{\left(a-b\right)}{\left(c-a\right)\left(c-b\right)}\)

 \(=\frac{1}{\left(c-a\right)}+\frac{1}{\left(b-c\right)}\)

Cộng theo vế các dẳng thức trên đựoc ĐPCM 

24 tháng 1 2018

Lam tat the ma anh van hieu

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

 

22 tháng 10 2019

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả hai vế với \(\frac{1}{b-c}\)

=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                  \(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Cộng vế với vế ta có:

\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Vậy ta có điều phải chứng minh.