Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\hept{\begin{cases}a+b=x\\b+c=y\\c+a=z\end{cases}}\)
cậu tính A theo x,y,x rồi chứng minh
\(B=\frac{x}{z-y}.\frac{y}{x-z}+\frac{y}{x-z}.\frac{z}{y-x}+\frac{z}{y-x}.\frac{x}{z-y}=-1\)
thì ta có A+2B>=0 -->A>=-2B=2
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Subtract 2 from both sides:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}-2\ge2-2\)
Refine:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}\ge0\)
Simplyfy : \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}:\) \(\frac{4a^2bc-4a^2c^2-4a^2b^2+2a^2b-2a^2c+4ab^2c+4abc^2+2ac^2-2ab^2-4b^2c^2+2b^2c-2bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}-2\)
Convert element to fraction: \(2=\frac{2}{1}\)
\(=\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a^2\right)}{\left(c-a\right)}-\frac{2}{1}\)
Find LCD for: \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{c-a}-\frac{2}{1}\):
Find the least common denominator 1 (a - b) (b - c) (c- a) = (a - b) (b - c) (c- a)(a - b) (b - c) (c- a)
Sau đó vào đây để xem bài giải tiếp theo nhá! Lười đánh máy tiếp lắm! Có gì mai mốt sử dụng phần mềm đó giải khỏi phải lên đây hỏi.
Step-by-Step Calculator - Symbolab
Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)
\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)
Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\)
=> ĐPCM
Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
C/m bằng biến đổi tương đương như sau
\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)
P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm
Đặt \(x=\frac{a+b}{a-b};y=\frac{b+c}{b-c};z=\frac{c+a}{c-a}\)
Ta có : \(x+1=\frac{2a}{a-b};y+1=\frac{2b}{b-c};z+1=\frac{2c}{c-a}\) (1)
\(x-1=\frac{2b}{a-b};y-1=\frac{2c}{b-c};z-1=\frac{2a}{c-a}\) (2)
Từ (1) và (2) => \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
<=> \(\left(xy+x+y+1\right)\left(z+1\right)=\left(xy-x-y+1\right)\left(z-1\right)\)
<=> \(xyz+xz+yz+z+xy+x+y+1=xyz-xz-yz+z-xy+x+y-1\)
<=> \(xy+yz+xz=-1\)
TA có \(\left(x+y+z\right)^2\ge0\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+xz\right)=2\)
đề bài thiếu rùi CM cái gì đó