Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4V\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=U:R=2,4:3,2=0,75A\\I1=U1:R1=2,4:6=0,4A\\I2=U2:R2=2,4:12=0,2A\\I3=U3:R3=2,4:16=0,15A\end{matrix}\right.\)
a, \(=>R1ntR2ntR3=>Rtd=R1+R2+R3=6+12+16=34\left(om\right)\)
b, \(=>Im=I1=I2=I3=\dfrac{U}{Rtd}=\dfrac{3,4}{34}=0,1A\)
a) Điện trở tương đương là:
\(R_{tđ}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}}=\dfrac{1}{\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{4}}=2\left(\Omega\right)\)
b) Hiệu điện thế U:
\(U=I.R=3.2=6\left(V\right)\)
Điện trở tương đương của mạch:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\Leftrightarrow R_{tđ}=\dfrac{R_1R_2R_3}{R_1R_2+R_2R_3+R_3R_1}=\dfrac{4.6.12}{4.6+6.12+12.4}=2\Omega\)
CĐDĐ qua mỗi điện trở
\(I_1=\dfrac{U_1}{R_1}=\dfrac{U}{R_1}=\dfrac{4}{4}=1\left(A\right);\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{U}{R_2}=\dfrac{4}{6}=\dfrac{2}{3}\approx0,667\left(A\right);\)
\(I_3=\dfrac{U_3}{R_3}=\dfrac{U}{R_3}=\dfrac{4}{12}=\dfrac{1}{3}\approx0,333\left(A\right)\)
a)Điện trở tương đương:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=\dfrac{16}{5}\Omega=3,2\Omega\)
b)\(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=2,4V\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75A\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2A\)
\(I_3=I_m-I_1-I_2=0,15A\)
Giải
a. Vì \(R_1\)//\(R_2\) nên điện trở tương đương của đoạn mạch là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.6}{12+6}=4\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{12}{4}=3A\)
Vì \(R_1\)//\(R_2\) nên ta có :
\(U=U_1=U_2=12V\)
CĐDĐ qua mỗi điện trở là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{12}=1A\)
\(\Rightarrow I_2=I-I_1=3-1=2A\)
c. Đổi : \(10'=600s\)
Nhiệt lượng tỏa ra trên mạch điện trong 10' là :
\(Q=I^2.R.t=3^2.4.600=21600J\)
a,có \(R1//R2//R3\)
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{20}\)
\(=>Rtd=5\left(om\right)\)
\(b,=>Im=\dfrac{U}{Rtd}=\dfrac{12}{5}=2,4A\)
\(=>U=U123=U1=U2=U3=12V\)
\(=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{12}{10}=1,2A\\I2=\dfrac{U2}{R2}=\dfrac{12}{20}=0,6A\\I3=\dfrac{U3}{R3}=\dfrac{12}{20}=0,6A\end{matrix}\right.\)
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=3,2\left(\Omega\right)\)
\(U=U_1=U_2=U_3=2,4V\)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I_3=\dfrac{U_3}{R_3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
1. bạn tự vẽ sơ đồ mạch điện nhé!
2.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4\left(V\right)\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I1=\dfrac{U1}{R1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I2=\dfrac{U2}{R2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I3=\dfrac{U3}{R3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)