K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

a)Vì BN=AC mà AC=AM'

 => BN=AM' (tính chất bắc cầu)

 vì BN=AM', AB=AB

 =>AN=BM'

Vì BN'=BC mà BC=AM
=>BN'=AM

Vì BN'=AM, AB=AB
=>AN'=BM

Vì BN=AC ,AM=BC

=>MC=NC

b) mình chịu

cảm ơn bạn Nguyễn Thành Danh nhiều nha

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

24 tháng 2 2020

A B C O M' M N N'

a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA  có;

^M'AB = ^NBA = 90o 

AB chung

AM' = BN  ( = AC)

=> \(\Delta\)AM'B = \(\Delta\)BNA  

=> AN = BM'

+) Vì AM' = ABN ; AM = BN' ( = BC )

=> AM = BN'

^MAB = ^N'BA = 90o 

=> \(\Delta\)AMB = \(\Delta\)BN'A 

=> AN' = BM 

+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC 

BN = AC 

^MAC = ^CBN ( = 90o )

=> \(\Delta\)AMC = \(\Delta\)BCN 

=> MC = NC 

b)  \(\Delta\)AM'B = \(\Delta\)BNA   ( chứng minh ở a)

=> ^M'BA = ^NAB mà  hai góc này ở vị trí so le trong 

=> AN // BM'

\(\Delta\)AMB = \(\Delta\)BN'A 

=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong 

=> MB // AN'

c) Gọi O là trung điểm của AB 

Xét \(\Delta\)OAM và \(\Delta\)OBN' có:

OA = OB 

^OAM = ^OBN' 

AM  = BN' 

=> \(\Delta\)OAM = \(\Delta\)OBN'  => ^AOM = ^BON'  mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o 

=> M; O; N' thẳng hàng (1)

Tương tự chứng minh được:

\(\Delta\)OAM' = \(\Delta\)OBN 

=> M'; O; N thẳng hàng (2)

Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB

4 tháng 3 2021

Làm sao Nguyễn Linh Chi vẽ được hình như vậy chia sẻ liên kết cho mk vs ạ!

Câu hỏi gì xàm quá vậy

29 tháng 2 2020

a) Giả sử ta kẻ My \(\perp\)BC cắt Bx tại A'

Kết hợp với ^CBx = 450 suy ra \(\Delta\)A'MB vuông cân tại M

=> \(\frac{BM}{BA'}=\frac{1}{\sqrt{2}}\)Lại có \(\frac{BM}{BA}=\frac{1}{\sqrt{2}}\)nên \(BA'\equiv BA\)

\(\Rightarrow A'\equiv A\)nên AM \(\perp\)BC

Kết hợp với CI \(\perp\)AD suy ra N là trực tâm của \(\Delta\)ADC

Suy ra DN \(\perp\)AC (đpcm)

b) Xét \(\Delta\)AMB và \(\Delta\)AMC có:

   MB = MC (gt)

   ^AMB = ^AMC ( = 900)

  AM : cạnh chung

Do đó \(\Delta\)AMB = \(\Delta\)AMC (c.g.c)

=> AB = AC (hai cạnh tương ứng) và ^MBA = ^MCA (=450) => ^BAC = 900

Xét \(\Delta\)AIC (^AIC = 900) và \(\Delta\)AHB (^AHB = 900) có:

    AB = AC (cmt) 

    ^ABH = ^ACI (cùng phụ với ^BAH)

Do đó \(\Delta\)CIA = \(\Delta\)AHB (ch-gn)

=> AI = BH

=> BH2 + CI2 = AI2 +CI2 =AC2 (không đổi)

c) Xét \(\Delta\)BHM và \(\Delta\)AIM có:

    AI = BH (cmt)

    ^HBM = ^IAM (cùng phụ với hai cặp góc đối đỉnh là ^BDH và ^ADM)

   BM = AM (cmt)

Do đó \(\Delta\)BHM = \(\Delta\)AIM

=> HM = IM (1) và ^HMB = ^IMA 

Mà ^IMA + ^IMD = 900 nên ^HMB + ^IMD = 900 (2)

Từ (1) và (2) suy ra \(\Delta\)HMI vuông cân tại M => ^HIM = 450

Lại có ^HIC = 900 nên IM là phân giác của ^HIC

Vậy tia phân giác của góc HIC luôn đi qua một điểm cố định M (đpcm)

    

13 tháng 1 2018

Vì BH là đường vuông góc và AH là đường xiên nên AH > BH

Chọn đáp án C.

B D H I A N M C

a,Vì : 

\(AM\mp BC,CI\)\(\Omega\)\(AD,CI\)\(\Omega\)\(AM=N\)

\(\rightarrow N\)là trực tâm \(\Delta ADC\rightarrow DN\)\(\Omega\)\(AC\)

b,Vì :

\(\widehat{BAC}=45^O,\frac{BM}{BA}=\frac{1}{\sqrt{2}}\rightarrow\Delta ABM\)   vuông cân tại \(M\)

\(\rightarrow\Delta ABC\)  vuông cân tại \(A\)

\(\rightarrow AB=AC\)MÀ 

\(\widehat{BAH}=\widehat{ACI}\left(+\widehat{DAC}=90^O\right),\widehat{AHB}\)

\(=\widehat{AIC}=90^O\)

\(\rightarrow\Delta ABH=\Delta CAI\left(g,c,g\right)\)

\(\rightarrow BH=AI\rightarrow BH^2+CI^2=AI^2+CI^2=AC^2=AB^2=2BM^2=\frac{BC^2}{2}=const\)

c,Ta có

\(\widehat{AIC}=\widehat{NMC}=90^O\rightarrow\widehat{IAN}=\widehat{NCM}\)

\(\rightarrow\Delta AIN~\Delta CMN\left(g.g\right)\rightarrow\frac{AN}{CN}=\frac{IN}{MN}\)

\(\rightarrow\Delta NIM~\Delta NAC\left(c.g.c\right)\rightarrow\widehat{MIN}=\widehat{NAC}=45^O\)Mà:

\(CI\) ! \(ID\rightarrow IM\)Là phân giác \(\widehat{CIH}\)\(\rightarrow\)Tia phân giác của góc HIC luôn đi qua 1 điểm M cố định.

Lưu ý : \(\mp\)Thay cho     !  

\(\Omega\)thay cho 

NHiều công thức mk ko thấy nên là mk viết thay bằng cái khác tương tự xíu nha bn 

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.a)CM: ΔAOM=ΔBOMb)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BDc) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // OtBài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường...
Đọc tiếp

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.

a)CM: ΔAOM=ΔBOM

b)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BD

c) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // Ot

Bài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, qua B vuông góc với Oy cắt Ox tại N. GọiH là giao điểm của AM và BM,I là trung điểm của MN.CMR:

a) ON=OM và AN=BM

b)Tia OH là tia phân giác góc xOy

c) Ba tia điểm O,H,I thẳng hàng

Bài3: Cho ΔABC vuông góc tại A.Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB

a) CM: AD=BC

b) CM: CD vuông góc với AC

c) Đường thẳng qua B song song với AC cắt tia DC tại N. CM:Δ ABM= ΔCNM

1

Bài 3: 

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: Ta có: ABCD là hình bình hành

nên CD//AB

mà AB⊥AC

nên CD⊥AC

c: Xét tứ giác ABNC có 

AB//NC

BN//AC

Do đó: ABNC là hình bình hành

Suy ra: AB=CN

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=NC

Do đó: ΔBAM=ΔNCM

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath