K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

\(A\left(2;-1\right)\)

\(B\left(-1;5\right)\)

\(C\left(3;-3\right)\)

a) Gọi pt đường thẳng BC là: y = ax +b

đường thẳng BC qua 2 điểm B(-1 ; 5) và C ( 3 ; -3) nên ta có:

\(\left\{{}\begin{matrix}5=-a+b\\-3=3a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

=> pt đường thẳng BC là: y = -2x + 3

b) Gọi pt đường thẳng AC là: (d): y = ax + b (1)

Vì đường thẳng AC qua 2 điểm A ( 2;-1) và C ( 3;-3) nên ta có:

\(\left\{{}\begin{matrix}-1=2a+b\\-3=3a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

=> pt đường thẳng AC là: (d1): y = -2x + 3 (2)

Từ (1) và (2) suy ra : (d) \(\equiv\) (d1)

=> A, B, C thẳng hàng

26 tháng 2 2019

Doanh ơi, không làm CTV nữa à???

Không có vợ chắc t bỏ hoc24 đây :''>

23 tháng 9 2021

Giả sử đường thẳng d đi qua A và B có dạng: `y=ax+b`

Đường thẳng d đi qua A và B là nghiệm của hệ: `{(2=a.1+b),(0=a.(-1)+b):}`

`<=> {(a=1),(b=1):}`

`=> d:\ y=x+1`

`=> C\ in (d)`

`=>` A,B,C thẳng hàng.

Đường thẳng đi qua 3 điểm đó là: `y=x+1`.

 

23 tháng 9 2021

bạn ơi sao lại => C ∈ (d) vậy

 

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

16 tháng 7 2021

a) Gọi pt đường thẳng AB là \(y=ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}1=a+b\\-1=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\Rightarrow y=2x-1\)

b) Thế \(C\left(2;3\right)\) vào pt đường thẳng AB thì ta thấy \(3=2.2-1\)

\(\Rightarrow C\in\) đường thẳng AB \(\Rightarrow A,B,C\) thẳng hàng

 

a: Gọi (d): y=ax+b là phương trình đường thẳng BC

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-1\\4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy: y=2x+1

b: Khi y=3 thì x+6=7

=>x=1

Thay x=1 và y=3 vào y=2x+1, ta được:

\(2\cdot1+1=3\)(đúng)

=>Ba đường đồng quy

c: \(\overrightarrow{AB}=\left(-3;-6\right)\)

\(\overrightarrow{BC}=\left(5;10\right)\)

Vì \(\dfrac{-3}{5}=\dfrac{-6}{10}\)

nên A,B,C thẳng hàng

1 tháng 12 2021

\(a,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)

\(b,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)

\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)

Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)

\(\Leftrightarrow P\notinđths\)

Vậy 3 điểm này ko thẳng hàng

26 tháng 5 2021

Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.

Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).

Do đó đường thẳng đi qua A, B là y = -x + 3.

Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó

18 tháng 3 2020

a) Pt đường thẳng BC có dạng: $y=ax+b (a\ne0)$

*Đường thẳng BC qua $B(-1;5) \Rightarrow -1a+b=5(1)$

*Đường thẳng BC qua $C(3;-3) \Rightarrow 3a+b=-3(2)$

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}-a+b=5\\3a+b=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

18 tháng 3 2020

b) Thay $A(2;-1)$ và đường thẳng $BC=y=-2x+3$

\(\Rightarrow-1=-2.2+3\\ \Leftrightarrow-1=-1\left(Đ\right)\)

$\Rightarrow$ \(A\in\) đường thẳng BC

Vậy 3 điểm $A,B,C$ thẳng hàng