Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
52+ 53 + 54 + ... + 510
= ( 52 + 53 ) + ( 54 + 55 ) + ... + ( 59 + 510 )
= 52.( 1 + 5 ) + 54.(1 + 5 ) + ... + 59.( 1 + 5 )
= 52.6 + 54.6 + ... + 59.6chia hết cho 6
Mà số chia hết cho 6 thì chia hết cho 3
Vậy tổng trên chia hết cho cả 3 và 6
5^2+5^3+5^4+...+5^9+5^10
=(5^2+5^3)+(5^4+5^5)+...+(5^9+5^10)
=(5^2.1+5^2.5)+(5^4.1+5^5.5)+...+(5^9.1+5^9.5)
=5^2.(1+5)+5^4.(1+5)+...+5^9.(1+5)
=5^2.6+5^4.6+...+5^9.6
=6.(5^2+5^4+...+5^9)
=2.3.(5^2+5^4+...+5^9)
Vậy tổng trên chia hết cho 3 và 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5
= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))
= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )
= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20
= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5
4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21
= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )
= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )
= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84
= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21
b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6
= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )
= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )
= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30
= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=5+5^2+5^3+5^4+........+5^{2010}\)
A = ( 1 + 5 + 52 ) + ............ + ( 52008 + 52009 + 52010 )
A = 31 + ......... + 31( 1 + 5 + 52 )
Mà 31\(⋮\)31 => A \(⋮\)31 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Lũy thừa có cơ số là 10 thì luôn có tận cùng là 0
=>Tổng các chữ số của lũy thừa có cơ số là 10 là 1
a)Tận cùng của 105 là 0 + với 35 sẽ cho 1 số có tận cùng là 5
Mà số có tận cùng là 5 thì chia hết cho 5
Xét tổng các chữ số của 105+35=1+3+5=9
Mà các số có tổng các chữ số bằng 9 thì chia hết cho 9
b)Tận cùng của 105+98 sẽ cho 1 số chẵn nên chia hết cho 2
Chia hết cho 9 làm tương tự như trên
c)Xét:Để chia hết cho 2,5 thì chữ số tận cùng phải bằng 0
Mà 105 có tận cùng bằng 0 và 1880 tận cùng bằng 0 =>105+1880 chia hết cho 2,5
Xét :Để chia hết cho 3,9 thì tổng các chữ số phải chia hết cho 3,9
Tổng các chữ số của:105+1880=1+1+8+8=18
18 chia hết cho 3,9
Vậy,...........
![](https://rs.olm.vn/images/avt/0.png?1311)
b1:
B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)
A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)
B2: bạn kéo xuống dưới nãy mk thấy có ng làm r
b3: (2x+1)(y-5)=168
Ta có bảng sau:
2x+1 | 1 | 2 | 4 | 7 | 8 | 12 | 14 | 21 | 24 | 42 | 84 | 168 |
2x | 0 | 1 | 3 | 6 | 7 | 11 | 13 | 20 | 23 | 41 | 83 | 167 |
x | 0 | 3 | 10 | |||||||||
y-5 | 168 | 24 | 8 | |||||||||
y | 173 | 29 | 13 |
(mấy ô mk để trống là loại vì x,y là số tự nhiên)
![](https://rs.olm.vn/images/avt/0.png?1311)
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
![](https://rs.olm.vn/images/avt/0.png?1311)
55 - 54 + 53
= 53 ( 25 - 5 + 1 )
= 53. 21
Mà 21 ⋮ 7 ⇒ 55 - 54 + 53 ⋮ 7
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình chỉ biết làm câu dưới thôi à
Giải
Nhân cả 2 vế với 5 ta có
5A = 5^2 + 5^3 + 5^4 +........+ 5^2014
=> 5A - A = ( 5^2 + 5^3 + 5^4 +...+ 5^2014 ) - ( 5 + 5^2 + 5^3 + .... + 5^2013 )
4A = 5^2014 - 5
=> 4A + 5 = 5^2014 - 5 + 5
=> 4A + 5 = 5^2014
4A + 5 = ( 5^1009 )^2
Vì 5^1009 thuộc N => ( 5^1009 )^2 là 1 số chính phương
Vậy ......
nhớ k cho mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=5+5^2+5^3+5^4+5^5+5^6\)
\(5A=5^2+5^3+5^4+5^5+5^6+5^7\)
\(\rightarrow5A-A=5^7-5\)
\(\rightarrow A=\frac{5^7-5}{4}\)
Vậy A < 5^7
\(B=5+5^2+5^3+....+5^{90}\)
\(B=5\left(1+5+5^2\right)+....+5^{88}\left(1+5+5^2\right)\)
\(B=5.31+....+5^{88}.31⋮31\)