\(4+2^2+2^3+............2^{20}\)

chunh minhB là lũy thừa của 2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

quên mất bài kia mk chưa có mũ mk lm lại nhé

B=4+2 ^2+2^3+...+2^ 20

Đặt C=2^ 2+2^ 3+...+2 ^20

=>2C=2^ 3+2^ 4+...+2^ 21

=>2C-C=2^ 21 -2^ 2=2^ 21 -4

=>B=4+C=4+2^ 21 -4=2^ 21

=>B là lũy thừa của 2(ĐPCM)

5 tháng 10 2017

A=4+2 2+2 3+...+2 20

Đặt B=2 2+2 3+...+2 20

=>2B=2 3+2 4+...+2 21

=>2B-B=2 21 -2 2=2 21 -4

=>A=4+B=4+2 21 -4=2 21

=>A là lũy thừa của 2(ĐPCM)

28 tháng 6 2015

A=4+22+23+...+220

Đặt B=22+23+...+220

=>2B=23+24+...+221

=>2B-B=221-22=221-4

=>A=4+B=4+221-4=221

=>A là lũy thừa của 2(ĐPCM)

b)A=3+32+33+...+3100

=>3A=32+33+...+3101

=>3A-A=3101-3

=>2A=3101-3

=>2A+3=3101-3+3=3101

Vậy 2A+3 là lũy thừa của 3(ĐPCM)

28 tháng 6 2015

a/

\(2A=8+2^3+...+2^{21}\)

\(2A-A=A=2^{21}+8-4-2^2=2^{21}\)

b/

\(3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=2B=3^{101}-3\)

\(\Rightarrow2B+3=3^{101}\)

18 tháng 9 2016

ta có: 2A=23+23+24+25+...+221

=>2A-A=23+221-22-22

=>A=23+221-(22+22)

=>A=23+221-23

=>A=(23-23)+221

=>A=221

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha

23 tháng 7 2018

A =4+2^2+2^3+...+2^50

A*2=2^3+2^3+2^4+...+2^50+2^51

A=(2^3+2^51)-(2^2+2^2)

A=8+2^51-8

A=2^51

\(T=3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3T=3^2+3^3+3^4+....+3^{100}\)

\(\Rightarrow3T-T=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+....+3^{99}\right)\)

\(\Rightarrow2T=3^{100}-3\)

\(\Rightarrow2T+3=3^{2n}=2.\frac{3^{100}-3}{2}+3=3^{2n}\)

\(\Rightarrow3^{100}-3+3=3^x\)

\(\Rightarrow3^{100}=3^x\)

\(\Rightarrow x=100\)

22 tháng 7 2016

a)3T=3(3+32+...+399)

3T=32+33+...+3100

3T-T=(32+33+...+3100)-(3+32+...+399)

2T=3100-3.THay vào ta được 3100-3+3=32n

=>3100=32n =>100=2n =>n=50

b)5A=5(52+53+...+52012)

5A=53+54+...+52013

5A-A=(53+54+...+52013)-(52+53+...+52012)

4A=52013-52.Thay vào ta được :52013-52+25=52013 là 1 lũy thừa của 5

-->Đpcm

c)4C=4(1+4+...+4100)

4C=4+42+...+4101

4C-C=(4+42+...+4101)-(1+4+...+4100)

3C=4101-1 suy ra \(C=\frac{4^{101}-1}{3}\).Với \(\frac{B}{3}=\frac{4^{101}}{3}>\frac{4^{101}-1}{3}=C\)

-->Đpcm

5 tháng 7 2018

\(a,\) \(\left(3^2\right)^3\) = \(3^{2.3}\) = \(3^6\)

\(\left(3^3\right)^2\) = \(3^{3.2}=3^6\)

\(\left(3^2\right)^5\) = \(3^{2.5}=3^{10}\)

\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)

b, \(\left(5^3\right)^2=5^{3.2}=5^6\)

\(\left(5^4\right)^3=5^{4.3}=5^{12}\)

\(\left(5^2\right)^4\) = \(5^{2.4}=5^8\)

\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)

22 tháng 7 2016

\(T=3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3T=3^2+3^3+3^4+.....+3^{100}\)

\(\Rightarrow3T-T=3^{100}-3\)

\(\Rightarrow2T=3^{100}-3\)

\(\Rightarrow2T+3=3^{100}\)

Mà đầu bài cho \(2T+3=3^{2n}\)

Nên 2n = 100

=> n = 10

14 tháng 8 2017

lên mạng :v

14 tháng 8 2017

1.\(\left(\dfrac{a}{b}\right)^2=\dfrac{a^2}{b^2}\)

2.\(\left(\dfrac{a}{b}\right)^0=1\)

3.\(\left(\dfrac{a}{b}\right)^m.\left(\dfrac{a}{b}\right)^n=\left(\dfrac{a}{b}\right)^{m.n}\)

4.am : an = am – n (m, n thuộc N; a thuộc N*, m ≥ n).

5.(a.b)\(^m\)=a\(^m\).b\(^m\)

6.\(\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}\)

7. (am)n = am.n (m, n thuộc N)

8.

Nhân hai lũy thừa cùng số mũ: am.bm = (a.b)m (m thuộc N).

Chia hai lũy thừa cùng số mũ: am : bm = (a : b)m (m thuộc N).