Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
Dăm ba cái toán 7
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh
\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu
Do đó \(\widehat{A_1}=\widehat{B_3}\)
Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù
=> \(\widehat{A_4}=180^0-\widehat{A_1}\) \((1)\)
Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù
=> \(\widehat{B_2}=180^0-\widehat{B_3}\) \((2)\)
\(\widehat{A_1}=\widehat{B_3}\) \((3)\)
Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)
b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) theo câu a
Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh
\(\widehat{A_1}=\widehat{B_3}\) câu a
Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)
c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù
\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài
Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)
Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù
\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)