Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=k^3\)(1)
Mặt khác: Áp dụng tính chất dãy tỉ số bằng nhau ta cũng có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}=k\Rightarrow\left(\frac{a+b-c}{b+c-d}\right)^3=k^3\)(2)
Từ (1) và (2) ta được: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(=k^3\right)\)
(Mình có sửa lại đề vì nếu viết mẫu của phân số thứ nhất là b3 + c3 + d3 là sai)
b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}
=>căn x E{6;4;8;2;14;-4}
=>xE{36;24;64;4;196;16}
Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}
giúp mình bài này với
so sánh bằng cách nhanh nhất
a 2013 phần 2012 và 13 phần 12
b 15 phần 46 và 21 phần 62
Giải:
Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)
Ta có:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Ta có : \(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\)
\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)