\(B=2^2+2^3+2^4+...+2^{20}\)  .Chứng tỏ B+4 không là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

B=2^2+2^3+2^4+....+2^20. 
=>2B=2^3+2^4+....+2^21 
=>2B-B=2^3+2^4+....+2^21-(2^2+2^3+2^4+.... 
=>B=2^21- 2^2 
=>B+4=2^21- 2^2+4=2^21=2^20.2=(2^10)^2.2 
vi (2^10)^2 la scp nen (2^10)^2.2 ko la so chinh phuong 
=)B=4 ko la scp

23 tháng 11 2017

Bấm vô đây:

Câu hỏi của Thượng Hoàng Yến - Toán lớp 6 - Học toán với OnlineMath

29 tháng 9 2016

\(A=2^2+2^3+2^4+....+2^{20}\)

\(\Rightarrow2A=2^3+2^4+2^5+...+2^{21}\)

\(\Rightarrow2A-A=\left(2^3+2^4+2^5+...+2^{21}\right)-\left(2^2+2^3+2^4+....+2^{20}\right)\)

\(\Rightarrow A=2^{21}-2^2\)

\(\Rightarrow A+4=2^{21}-4+4\)

\(\Rightarrow A+4=2^{21}=\left(2^{10}\right)^2.2\)

Lại có: \(\left(2^{10}\right)^2\) là số chính phương, nhưng \(2\)không là số chính phương. Nên: \(\left(2^{10}\right)^2\) không là số chính phương

Vậy: \(A+4\) không là số chính phương.

29 tháng 9 2016

A=2^2+2^3+2^4+....+2^20. 
=>2A=2^3+2^4+....+2^21 
=>2A-A=2^3+2^4+....+2^21-(2^2+2^3+2^4+.... 
=>A=2^21- 2^2 
=>A+4=2^21- 2^2+4=2^21=2^20.2=(2^10)^2.2 
vi (2^10)^2 la số chínhp nen (2^10)^2.2 ko la so chinhp
=)A=4 ko la scp 

16 tháng 10 2017

biểu thứ là gì?

10 tháng 1 2018

M = 5 + 52 + 53 + ... + 52012.

    = ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80

    =6. 52 + 6. 53 + ...+ 6. 5 80

    =\(6\).52.53x...x5 80

Vậy M chia hết cho 6.

1 tháng 8 2018

a) 1^3 + 2^3 = 9 => Có là số chính phương ( 9 = 3^2 )

b) 1^3 + 2^3 + 3^3 = 36 => Có là số chính phương ( 36 = 6^2 )

c) 1^3 + 2^3 + 3^3 + 4^3 = 100 => Có là số chính phương ( 100 = 10^2 )

17 tháng 5 2015

a) 2 + 22 + 23 + ...+ 220 chia hết cho 2 nhưng không chia hết cho 4 nên không phải số chính phương.

b) 1015 + 8 = (...0) + 8 = ...8 có tận cùng là 8 nên không phải số chính phương.

17 tháng 5 2015

@@ Ai cho cậu đổi đề ???

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)