Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b2 = ac
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
ta có a/b=c/d
Áp dụng tính chất cơ bản của DTSBN, ta có
a/b=c/d nên a/c=b/d
=>(ac/bd)=(a^2)/(c^2)=(b^2)/(d^2)=( a^2 + c^2)/(b^2 + d^2)
=> ĐPCM
a) Ta có\(\frac{3a-b}{3a+b}=\frac{3c-d}{3c+d}\)
=> (3a - b)(3c + d) = (3a + b)(3c - d)
=> 9ac + 3ad - 3bc - bd = 9ac - 3ad + 3bc - bd
=> 3ad - 3bc = -3ad + 3bc
=> 3ad + 3ad = 3bc + 3bc
=> 6ad = 6bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{b^2+d^2}{a^2+c^2}=\frac{b^2+d^2}{\left(bk\right)^2+\left(dk\right)^2}=\frac{b^2+d^2}{d^2k^2+d^2k^2}=\frac{b^2+d^2}{k^2\left(b^2+d^2\right)}=\frac{1}{k^2}\)(1);
\(\frac{bd}{ac}=\frac{bd}{bkdk}=\frac{1}{k^2}\left(2\right)\)
Từ (1)(2) => \(\frac{b^2+d^2}{a^2+c^2}=\frac{bd}{ac}\)(đpcm)
Ta có :
\(VT=\dfrac{a^2+b^2}{b^2+c^2}\)
Mà \(b^2=ac\)
\(\Leftrightarrow VT=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}=VP\left(đpcm\right)\)
Vậy...
Ta có: \(b^2=ac\)
\(\Leftrightarrow ac=b\cdot b\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Leftrightarrow\dfrac{a^2}{ac}=\dfrac{a^2+b^2}{b^2+c^2}\)
hay \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)(đpcm)
ta co b^2=ac
\(\Rightarrow\)a/b=b/c
\(\Rightarrow\)a^2/b^2=b^2/c^2=a/b.b/c
\(\Rightarrow\)a^2+b^2/b^2+c^2=a/c (dpcm)
Vậy ......