Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
bai1
(2+22)+(23+24)+...+(259+260)
=(2+22+23)+...+(258+259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=3.2+3.23+3.59chia hết cho 3 vì có số 3
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
B=1+11+112+...+1199
=(1+11+112+113+114)+(115+116+117+118+119)+...+(1195+1196+1197+1198+1199)
=1(1+11+112+113+114)+115(1+11+112+113+114)+...+1195(1+11+112++113+114)
=1.16105+115.16105+...+1195.16105 chia hết cho 5
Vậy B chia hết cho 5.
Học tốt!
Ta có : B =1+11^1+11^2+11^3+...+11^99 =>11B=11+11^2+11^3+11^4+...+11^100 =>10B=(11+11^2+11^3+11^4+...+11^100)-(1+11^1+11^2+11^3+...+11^99) =>10B=11^100-1 mà 11 mũ 100 có tận cùng =1 nên 11 mũ 100 -1 có tận cùng =0 nên chia hết cho 5. =>B =(11^100-1):10 cũng có tận cùng bằng 0 nên cũng chia hết cho 5. Vậy B chia hết cho 5. (lưu ý: ^ là mũ)
Xét chữ số tận cùng của các lũy thừa trên đều là 1
\(\rightarrow1+11^1+11^2+11^3+...+11^9\)
\(=1+\overline{...1}+\overline{...1}+\overline{...1}+...+\overline{...1}\)
\(=11^0+11^1+11^2+...+11^9\)
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
\(\Rightarrow B⋮5\)( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết ) soo