Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{1}{2}\)
\(B=\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{x-4}{\sqrt{x}+2}\)( ĐKXĐ : \(x\ge0\))
\(B=\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(B=\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}-2}{1}\)
\(B=\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(B=\frac{x+\sqrt{x}+x-2\sqrt{x}}{\sqrt{x}}\)
\(B=\frac{2x-\sqrt{x}}{\sqrt{x}}\)
\(B=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}}=2\sqrt{x}-1\)
b) \(A+B=2\)
\(\Leftrightarrow\frac{1}{2}+2\sqrt{x}-1=2\)( ĐKXĐ : \(x\ge0\))
\(\Leftrightarrow2\sqrt{x}-\frac{1}{2}=2\)
\(\Leftrightarrow2\sqrt{x}=\frac{5}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{5}{4}\)
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(\frac{5}{4}\right)^2\)
\(\Leftrightarrow x=\frac{25}{16}\)( tmđk )
Vậy x = 25/16
a) \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{2}\)
\(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)
\(=\frac{4}{x-4}+1\)
\(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
a)
\(M=\frac{-(\sqrt{x}+1)\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-2\right)\left(x+2\right)}+\frac{-2\sqrt{x}\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)\left(x+2\right)}+\frac{2+5\sqrt{x}}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-x-3\sqrt{x}-2-2x+4\sqrt{x}+2+5\sqrt{x}}{4-x}\)
\(=\frac{-3x+6\sqrt{x}}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-3\sqrt{x}\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-3\sqrt{x}}{-\sqrt{x}-2}\)
Bài 1.
\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\frac{x}{x-\sqrt{x}}\)với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
a) \(B=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)
\(B=\frac{4\sqrt{x}\cdot\sqrt{x}}{\left(\sqrt{x}+1\right)x}=\frac{4x}{\left(\sqrt{x}+1\right)x}=\frac{4}{\sqrt{x}+1}\)
b) Để B > 1
=> \(\frac{4}{\sqrt{x}+1}>0\)( với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\))
Vì 4 > 0
=> \(\sqrt{x}+1>0\)
<=> \(\sqrt{x}>-1\)( luôn luôn đúng \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)) ( theo ĐKXĐ )
Vậy \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)thì B > 1
Chưa chắc lắm ... Còn câu 2 thì tí nữa mình làm cho
Bài 2.
\(A=2\sqrt{5}-1\)
\(B=\frac{2}{x-1}\cdot\sqrt{\frac{x^2-2x+1}{4x^2}}\)( x > 0 )
a) \(B=\frac{2}{x-1}\cdot\frac{\sqrt{x^2-2x+1}}{\sqrt{4x^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\left|x-1\right|}{\left|2x\right|}\)
\(B=\frac{2}{x-1}\cdot\frac{x-1}{2x}=\frac{1}{x}\)( vì x > 0 )
b) Để A + B = 0
=> \(\left(2\sqrt{5}-1\right)+\frac{1}{x}=0\)( ĐKXĐ : \(x\ne0\))
<=> \(\frac{1}{x}=-\left(2\sqrt{5}-1\right)\)
<=> \(\frac{1}{x}=1-2\sqrt{5}\)
<=> \(x\times\left(1-2\sqrt{5}\right)=1\)
<=> \(x=\frac{1}{1-2\sqrt{5}}\)( tmđk )
Vậy \(x=\frac{1}{1-2\sqrt{5}}\)
a, \(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) (ĐKXĐ: \(x>0\))
\(=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
b, \(\frac{A}{B}=\frac{2+\sqrt{x}}{\sqrt{x}}:\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\frac{A}{B}>\frac{3}{2}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{3}{2}>0\)
\(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
\(\Leftrightarrow2-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với điều kiện \(x>0\)ta có: \(0< x< 4\)
Vậy với \(0< x< 4\)thì \(\frac{A}{B}>\frac{3}{2}\)
\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
a.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\)
\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)
\(\Leftrightarrow3>2\)
Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)
Lát mình giải 2 câu kia,di ăn com cái
b.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)
\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)
\(\Leftrightarrow x>0\)
Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)
c.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)
\(\Leftrightarrow x-4\sqrt{x}+5< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)
Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)
\(\frac{2\sqrt{x}-4}{\sqrt{x}-1}\ge2\) \(\left(ĐK:x\ge0\right)\)
\(\frac{2\sqrt{x}-2-2}{\sqrt{x}-1}\ge2\)
\(2+\frac{-2}{\sqrt{x}-1}\ge2\)
\(\frac{-2}{\sqrt{x}-1}\ge0\)
\(\Rightarrow\sqrt{x}-1< 0\) ( Vì -2 < 0 và \(\sqrt{x}-1\) là mẫu số )
\(\sqrt{x}< 1\)
\(\hept{\begin{cases}1\ge0\left(llđ\right)\\x< 1^2\end{cases}}\)
\(x< 1\)
\(\Rightarrow0\le x< 1\) là nghiệm của bất phương trình trên
b,
\(|B|-B=0\)
\(|B|=B\)
\(\orbr{\begin{cases}B=B\\B=-B\end{cases}}\)
\(\orbr{\begin{cases}0=0\left(llđ\right)\\2B=0\end{cases}}\)
Ở đây ngoặc vuông nên lấy toán bộ nghiệm
\(\Rightarrow x\ge0\) là nghiệm của phương trình