Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e lớp 7 nên sai thì thôi ạ
\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\left(ĐK:x\ne\pm1;0\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\)
\(=\left[\frac{\left(x+1+x-1\right)\left(x+1-x-1\right)}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right].\frac{x+2007}{x}\)
\(=\left(\frac{2x.0}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{2007}{x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007\left(x^2-4x-1\right)}{x^3-x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007x^2-8028x-2007}{x^3-x}+\frac{x^3-4x^2-x}{x^3-x}\)
\(=\frac{x^3+2003x^2-8029x-2007}{x^3-x}\)( số to vch )
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right).\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x+2}{\sqrt{x}+1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x+\sqrt{x}-x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Để P âm \(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Mà \(\sqrt{x}+2>0\forall x\Rightarrow\sqrt{x}-1< 0\Rightarrow x< 1\)
Để \(P\in Z\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\in Z\)
\(\Rightarrow1-\frac{3}{\sqrt{x}+2}\in Z\Rightarrow\frac{3}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_3\)
Mà \(\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=3\Rightarrow x=1\)
Mà để \(P\in Z^-\Rightarrow\hept{\begin{cases}x< 1\\x=1\end{cases}}\)\(\Rightarrow x\in\varnothing\)
Vậy không có giá trị nào của x để P nguyên âm
a, ĐKXĐ \(x\ne0,1\)
\(B=\frac{1}{x\left(x-1\right)}+\frac{2x}{x\left(x-1\right)}+\frac{x-1}{x\left(x-1\right)}\)
\(=\frac{3x}{x\left(x-1\right)}=\frac{3}{x-1}\)
b, Để B nguyên thì \(3⋮x-1\)
\(\Rightarrow x-1\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow x\in\left\{2,4,0,-2\right\}\)