\(\frac{1}{x^2-x}+\frac{2}{x-1}+\frac{1}{x}\)

a, Rút gọn 

b, Tìm x ng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, ĐKXĐ \(x\ne0,1\)

\(B=\frac{1}{x\left(x-1\right)}+\frac{2x}{x\left(x-1\right)}+\frac{x-1}{x\left(x-1\right)}\)

\(=\frac{3x}{x\left(x-1\right)}=\frac{3}{x-1}\)

b, Để B nguyên thì \(3⋮x-1\)

\(\Rightarrow x-1\in\left\{1,3,-1,-3\right\}\)

\(\Rightarrow x\in\left\{2,4,0,-2\right\}\)

7 tháng 7 2017

Bài 1 

ĐK \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

 A =\(\left(\frac{x^2-x+7}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{2x}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{x^2-x+7+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2+4x+4-x^2+4x-4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2+5}{\left(x+2\right)\left(x-2\right)}.\frac{\left(x+2\right)\left(x-2\right)}{6x}=\frac{x^2+5}{6x}\)

b , \(A=1\Rightarrow\frac{x^2+5}{6x}=1\Rightarrow x^2-6x+5=0\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}\left(tm\right)}\)

Vậy x=1 hoặc  x=5

Bài 2.

a. \(B=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2+x\right)\left(2-x\right)}:\frac{x+3}{2-x}\)

\(=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}.\frac{2-x}{x+3}=\frac{2x}{x+3}\)

b.  \(B=\frac{2x}{x+3}=2-\frac{6}{x+3}\)

B nguyên \(\Leftrightarrow x+3\inƯ\left(-6\right)\Rightarrow x+3\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)

Vậy \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)thì B nguyên

15 tháng 8 2021

a, Với x > 0 

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)

\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\sqrt{x}+1\)12
\(\sqrt{x}\)0 (loại )1
xloại1