Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{\sqrt{5}-1}{2}\Leftrightarrow2x+1=\sqrt{5}\)
\(\Rightarrow4x^2+4x+1=5\)
\(\Rightarrow4x^2+4x-4=0\)
\(\Rightarrow x^2+x-1=0\)
\(\Rightarrow-x^2=x-1\Rightarrow-x^3=x^2-x\)
\(B=\left[4x^3\left(x^2+x-1\right)-x^3+2x-2\right]^2+2021\)
\(=\left(-x^3+2x-2\right)^2+2021\)
\(=\left(x^2-x+2x-2\right)^2+2021\)
\(=\left(x^2+x-1-1\right)^2+2021\)
\(=\left(-1\right)^2+2021=2022\)
Ta có : \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{1}{2}\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\frac{1}{2}\sqrt{\left(\sqrt{2}-1\right)^2}=\frac{\sqrt{2}-1}{2}\)
Thay \(x=\frac{\sqrt{2}-1}{2}\)vào \(4x^5+4x^4-5x^3+5x-2\)được kết quả bằng -1
\(\Rightarrow A=\left(-1\right)^{2012}+2103=1+2103=2104\)
Ta có:
\(x=\frac{1}{2}.\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{\sqrt{2}-1}{2}\)
\(\Rightarrow x\left(x+1\right)=\frac{\sqrt{2}-1}{2}.\frac{\sqrt{2}+1}{2}=\frac{1}{4}\)
Thế vô bài toán ta được
\(A=\left(4x^5+4x^4-5x^3+5x-2\right)^{2016}+2017\)
\(=\left(4x^4\left(x+1\right)-5x^3+5x-2\right)^{2016}+2017\)
\(=\left(-4x^3+5x-2\right)^{2016}+2017\)
\(=\left(\left(-4x^3-4x^2\right)+\left(4x^2+4x\right)+x-2\right)^{2016}+2017\)
\(=\left(-x+1+x-2\right)^{2016}+2017\)
\(=\left(-1\right)^{2016}+2017=2018\)
Lời giải:
a)
\(3x^2-5x+1=2x-3\)
\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)
\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)
b)
\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)
\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)
\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)
c)
\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)
\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)
(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)
d)
\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)
(\(a=1;b=-5(m+1); c=m^2-2)\)