Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
Cho A= 4+42+43+....+423+424. Chứng Minh : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
ta có
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)
\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21
thế nê A chia hết cho 20x21 =420
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = 4 + 42 + 43 +......+ 423+ 424
Ta thấy các cặp số liên tiếp cộng lại với nhau đều chia hết cho 20, ví dụ:
4 + 42 = 20, 43 + 44 = 320, 45 + 46 = 5120...
Vì đây là số chẵn, nên A sẽ chia hết cho 20.
Tiếp tục, BC (21 và 4) = {84; 168; 252; 336; 420; 504; 588....}
Như vậy, ta để ý thấy tích của các lũy thừa gồm số 4 và số mũ đều là số chẵn, BC của 4 và 21 cũng đều là số chẵn.
Vậy A chia hết cho 21.
Song, vì A chia hết cho 20 và 21, trong trường hợp này A chỉ có thể chia hết cho 20.21 = 420
4+42+43+...+426
=(4+42)+...+(425+426)
=4.(1+4)+...+425.(1+4)
=4.5+...+425.5
=5.(4+...+425) CHIA HẾT CHO 20 VÀ K CHIA HẾT CHO 21
Ta có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24
= ﴾4 + 4^2﴿ ﴿ + ﴾4^3 +4^4 ﴿......+ ﴾4^23+ 4^24 ﴿
=﴾4 + 4^2 ﴿.1+﴾4 + 4^2 ﴿.4^2+...+﴾4 + 4^2 ﴿.4^22
=20.﴾1+4^2+...+4^22 ﴿ chia hết cho 20
Ta lại có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24
=﴾4 + 4^2 + 4^3 ﴿+...+﴾4^22+4^23+4^24 ﴿
=﴾4 + 4^2 + 4^3 ﴿.1+...+﴾4 + 4^2 + 4^3 ﴿.4^21
=21.﴾1+...+4^21 ﴿ chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN﴾20;21﴿=1
=> A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy..
Ta có :
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + 43 . ( 4 + 16) + ... + 423 .(4 + 16)
= 20 + 43. 20 + ... + 423 . 20 \(⋮\)cho 20