Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt tổng trong ngoặc là M
=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)
Khi đó A=1+M (M<1)
Ta có công thức :1+x<2 nếu x<1
=>A<1
b=31+32+...+3300
b=(3+32)+(33+34)+...+(3299+3300)
b=3(1+3)+33(1+3)+...+3299(1+3)
b=4(3+33+...+3299)
b=2.2(3+33+...+3299)
\(\Rightarrow\)b\(⋮\)2
Vậy...
A = \(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}+\frac{-2}{9}\)
A = \(\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{73}\)
A = \(\left(\frac{3-2}{9}\right)-\left(\frac{27+1}{36}\right)+\left(\frac{9+1}{15}\right)+\frac{1}{73}\)
A = \(\frac{1}{9}-\frac{7}{9}+\frac{6}{9}+\frac{1}{73}\)
A = \(0+\frac{1}{73}=\frac{1}{73}\)
Làm
B = 1/3 - 3/4 - (-3)/5 + 1/73 - 1/36 + 1/15 + -2/9
B = 1/3 -3/4 + 3/5 +1/73 - 1/36 + 1/15 -2/9
B = [ 1/3 + 3/5 + 1/15 ] + [ -3/4 - 1/36 -2/9] + 1/73
B = [ 5/15 + 9/15 + 1/15 ] + [ -27/36 - 8/36 - 1/36 ] + 1/73
B = 1 + (-1) + 1/73
B = 1/73
HỌC TỐT Ạ
1)Tìm x thuộc N sao cho:
2016+0x=2016 <=> 0x=0 đúng với mọi x thuộc N
Số phần tử của tập A:
A=N
2, \(M=\left(3^1+3^2+3^3\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+..+3^{28}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+..+3^{28}.13=13.\left(3+3^4+...+3^{28}\right)\)chia hết cho 13
3B=3^1+3^2+3^3+.....+3^119+3^120
3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)
2B=3^120-1
B=3^120-1/2
\(B=1+3^1+3^2+...+3^{118}+3^{119}\)
\(3B=3+3^2+3^3+..+3^{120}\)
\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2B=1+3^{120}\)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
\(B=3^1+3^2+...+3^{30}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{29}+3^{30}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{29}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{29}\right)\)
\(=2\cdot2\cdot\left(3+3^3+...+3^{29}\right)⋮2\)
THANK YOU :3