Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+...+32016
3A=32+33+34+...+32017
3A-A=(32+33+34+...+32017)-(3+32+33+...+32016)
2A=32017-3
=>2A+3=32017-3+3=32017
=>32017=3n
=>n=2017
Mình giải bài này rồi mà không biết đúng hay sai nên các bạn làm bài này cho tớ xem hộ tớ đúng không nhé. Cảm ơn!
A = x + 3 + 32 + 33 + 34 +.........................+ 32015 + 32016 + 32017.
A có: (2017 - 1) + 1 = 2018 số hạng.
2018 : 3 = 672 dư 2
A = (x + 3) + (32 + 33 + 34) + .........................+ (32015 + 32016 + 32017)
A = (x + 3) + 32.(1 + 3 + 32) + ..........................+ 32015.(1 + 3 + 32)
A = (x + 3) + 32. 13 +...........................+ 32015. 13
A = (x + 3) + 13.(32 +.............................+32015)
Mà A chia hết cho 13 => x + 3 chia hết cho 13.
=> x + 3 thuộc B(13)
B(13) = {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x + 3 thuộc {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x thuộc {-3 ; 10 ; 23 ; 36 ; 49 ;.......}
Mà x thuộc N, x chia hết cho 12 và x < 50.
=> x = 36.
Vậy số tự nhiên x cần tìm để A chia hết cho 13 là 36.
(Sao ko ai biết cách làm bài này thế??)
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
a) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1
=> 4101 - 1 + 1 = 4n
=> 4101 = 4n
=> n = 101
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101