Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=2+2^2+2^3+...+2^{90}\)
=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{89}+2^{90})\)
=> \(A=2(1+2)+2^3(1+2)+...+2^{89}(1+2)\)
=> \(A=2.3+2^3.3+...+2^{89}.3\)
=> \(A=(2+2^3+...+2^{89}).3\)chia hết cho 3
b, \(A=2+2^2+2^3+...+2^{90}\)
=> \(A=(2+2^2+2^3)+\left(2^4+2^5+2^6\right)+...+(2^{88}+2^{89}+2^{90})\)
=> \(A=2(1+2+2^2)+2^4.\left(1+2+2^2\right)+...+2^{88}(1+2+2^2)\)
=> \(A=2.7+2^4.7+...+2^{88}.7\)
=> \(A=(2+2^4+...+2^{88}).7\)chia hết cho 7
a, A=2+2^2+2^3+2^4+...+2^90
A=(2+2^2)+(2^3+2^4)+..+(2^89+2^90)
A=2.(1+2)+2^3(1+2)+....+2^89(1+2)
A=2.3+2^3.3+...+2^89.3
A=3.(2+2^3+...+2^89)\(⋮\)3
=> A\(⋮\)3=>ĐPCM
b, A=2+2^2+2^3+....+2^90
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^100)
A=2.(1+2+2^2)+2^4.(1+2+2^2)+...+2^88.(1+2+2^2)
A=2.7+2^4.7+...+2^88.7
A=7.(2+2^4+...+2^88)\(⋮\)7
=>A\(⋮\)7=>ĐPCM
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{89}\right)\)
\(=4\left(3+3^3+...+3^{89}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{98}\right)\)
\(=13\left(3+3^4+...+3^{98}\right)⋮13\)
a) chia hết cho 2 thì có các chữ số là 0 ; 2 ;4 ;6 ;8 nên 10602 có chia hết cho 2
chia hết cho 3 thì lấy các số trong 1060 công với nhau : 1 + 0 + 6 + 2 = 9 vậy có chia hết cho 3
==> tổng này chia hết cho 2 và 3
muộn rồi nên mình ko giải được tiếp mong bạn tích minh
mai mimh giải típ cho
\(\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{100.103}\)
\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{7}-\frac{1}{103}\)
\(=\frac{96}{721}\)
\(\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(=\frac{2}{3}.\frac{96}{721}\)
\(=\frac{64}{721}\)
\(A=\)\(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=2\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2.3\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(3B=2.\frac{96}{721}\)
\(3B=\frac{192}{721}\)
\(\Rightarrow B=\frac{192}{721}:3\)
\(B=\frac{64}{721}\)
\(A=\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
Vậy \(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=\frac{2}{3}.\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\frac{96}{721}\)
\(B=\frac{64}{721}\)
Vậy \(B=\frac{64}{721}\)
_Chúc bạn học tốt_
a, vì n^3+3n^2+2^n chia hết cho 6 nên:
n=3+3-2+2 chia hết cho 6
n= 2
b,n= 13-5 = n vậy nên:
suy ra : 5-13= n
vậy n =(-8)
k nha gagagagagaggaga
\(B=2+2^2+2^3+...+2^{92}\)
=> \(B=(2+2^2+2^3+2^4)+...+\left(2^{89}+2^{90}+2^{91}+2^{92}\right)\)
=> \(B=2(1+2+2^2+2^3)+...+2^{89}\left(1+2+2^2+2^3\right)\)
=> \(B=2.15+...+2^{89}.15\)
=> \(B=(2+...+2^{89}).15\)CHIA HẾT CHO 15
B = 2 + 22 + 23 + .... + 292
B = ( 2 + 22 + 23 + 24 ) +.....+ ( 289 + 290 + 291 + 292)
B = 2(1+2+22+23) +....+289(1+2+22+23)
B = 2.15+...+289.15
B = (2 + ..... + 2 89)
15 chia hết cho 15