\(^2\)+2\(^{^{ }3}\).....+2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

\(B=1+2+2^2+2^3+...+2^{2015}\)

\(B=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2013}+2^{2014}+2^{2015}\right)\)

\(B=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2013}\left(1+2+2^2\right)\)

\(B=7+2^3.7+... +2^{2013}.7\)

\(B=7\left(1+2^3+...+2^{2013}\right)⋮7\)

20 tháng 11 2017

Ta co:7 ^4n -1=(7 ^4 )^ n -1=2401 ^n -1=..........1-1=...........0 chia hết cho 5 =>dpcm

9 tháng 3 2017

a) Ta có:

\(\overline{abbc}=\overline{ab}.\overline{ac}.7\left(1\right)\)

\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\)

\(\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)

\(\Leftrightarrow7.\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)

\(0< \frac{\overline{bc}}{\overline{ab}}< 10\)

\(\Leftrightarrow0< 7.\overline{ac}-1000< 10\)

\(\Leftrightarrow100< 7.\overline{ac}< 110\)

\(\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)

\(\Leftrightarrow\overline{ac}=15\)

Thay vào \(\left(1\right)\) ta được:

\(\overline{1bb5}=\overline{1b}.15.7\)

\(\Leftrightarrow1005+110b=1050+105b\)

\(\Leftrightarrow5b=45\Leftrightarrow b=9\)

Vậy: \(\left\{\begin{matrix}a=1\\b=9\\c=5\end{matrix}\right.\)

b) Vì \(2012;92\in B\left(4\right)\)

\(\Rightarrow2012^{2015};92^{94}\in B\left(4\right)\)

\(\Rightarrow\left\{\begin{matrix}2012^{2015}=4m\left(m\ne0\right)\\92^{96}=4n\left(n\ne0\right)\end{matrix}\right.\)

Khi đó: \(7^{2012^{2015}}-3^{92^{94}}=7^{4m}-7^{4n}=\left(...1\right)-\left(...1\right)=0\)

\(7^{2012^{2015}}-3^{92^{94}}\) có tận cùng \(=0\Rightarrow7^{2012^{2015}}-3^{92^{94}}⋮10\)

Dễ thấy: \(7^{2012^{2015}}-3^{92^{94}}>0\)\(7^{2012^{2015}}-3^{92^{94}}⋮10\)

\(\Rightarrow A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)=5k\left(k\in N\right)\)

Vậy \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\) là số tự nhiên chia hết cho \(5\) (Đpcm)

11 tháng 3 2017

Mk cảm ơn bn nhiều lắm!!!!!!!!

thanghoaokthanghoa

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

14 tháng 7 2016

a) Ta có : 20012012  có tận cùng là 1 (số nào có tận cùng là 1 khi lũy thừa bất kì số nào đều có tận cùng là 1)

Ta có 19992000 có tận cùng là 1 (số nào có tận cùng là 4 khi lũy thừa bậc 4n thì có tận cùng là 1 mà ta có 2000 : 4 <=> 19992000 có tận cùng là 1)

Ta có: (.....1) + (.....1) = (......2) 

Vì tận cùng là 2 nên chia hết cho 2 nhưng khộng chia hết cho 5

Vậy.........

b) B = 1 + 33 + 25 + 37

=> 1 + 27 + (...2) + (33.3.3.3)

=> 1 + 27 + (...2) + (813)

=> 1 + 27 + (...2) + (....1)

=> 28 + (....2 + ....1)

=> 28 + (....3)

=> (........1)

Vì tận cùng là 1 không chia hết cho 2 nên 1 + 32 + 25 + 37 không chia hết cho 2

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản b) Cho A...
Đọc tiếp

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)

2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)

3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:

Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản 

b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)

4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)

5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên 

6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản

7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)

8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)

9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)

10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau

4
14 tháng 4 2019

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

14 tháng 4 2019

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

2 tháng 4 2017

vì chữ số tận cùng của 2015 là 5 nên 2015 nhân với số nào thì tận cùng vẫn là 5

2016 tận cùng là 6 nên 2016 nhân với số nào tận cùng vẫn là 6

A=5+6=11

B= tan cung la 6

AxB=11x6=66

66 ko chia het cho 5

3 tháng 4 2017

Vì sao B có tận cùng là 6

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM