Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a, \(M\left(x\right)=\left(5x^3-7x^2+x+7\right)-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(=5x^3-7x^2+x+7-7x^3+7x^2-2x-5+2x^3+4x+1\)
\(=3x+3\)
b, Bậc của M(x) là 1
\(3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Nghiệm của M(x) = -1
1/
a,=>P(x)=2x3-4x2+5x-7-2x3+4x2-x+10=4x+3
=>Q(x)=-9x3-8x2+5x+11+9x3+8x2-2x-7=3x+4
b, Ta có: P(x)=0 => 4x+3=0 => x=-3/4
Q(x)=0 => 3x+4=0 => x=-4/3
c, P(x)+Q(x)=4x+3+3x+4=7x+7
P(x)-Q(x)=4x+3-(3x+4)=4x+3-3x-4=x-1
2/
a, x2-5x-6=0
=>x2-6x+x-6=0
=>x(x-6)+(x-6)=0
=>(x+1)(x-6)=0
=>\(\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}}\)
b, (x+1)(x2+1)=0
Vì x2+1>0
=>x+1=0=>x=-1
c, \(-x^2-\frac{2}{5}=0\Rightarrow-x^2=\frac{2}{5}\Rightarrow x^2=\frac{-2}{5}\)
mà x2 lớn hoặc bằng 0 => không có x thỏa mãn
d, \(2x^2-x-6=0\Rightarrow2x^2-4x+3x-6=0\)
=>2x(x-2)+3(x-2)=0
=>(2x+3)(x-2)=0
=>\(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}}\)
3/
a, P(x)=(5x3-x3-4x3)+(2x4-x4)+(-x2+3x2)+1=x4+2x2+1
b, P(1)=14+2.12+1=1+2+1=4
P(-1)=(-1)4+2.(-1)2+1=1+2+1=4
c, Vì \(x^4\ge0;2x^2\ge0\Rightarrow x^4+2x^2\ge0\Rightarrow P\left(x\right)=x^4+2x^2+1\ge1>0\)
Vậy P(x) khoogn có nghiệm
Tìm nghiệm của đa thức sau:
a) P(x)= x2+4x+3
x2 + 4x + 3 = 0
<=> x2 + x + 3x + 3 = 0
<=> x(x + 1) + 3(x + 1) = 0
<=> (x + 1)(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy x = -1 ; x = -3 là nghiệm của đa thức P(x)
b) Q(x)= 2x2-5x+3
2x2 - 5x + 3 = 0
<=> 2x2 - 2x - 3x + 3 = 0
<=> (2x2 - 2x) - (3x - 3) = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (x - 1)(2x - 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}}\)
Vậy x = 1 ; x = 3/2 là nghiệm của đa thức Q(x)
c) R(x)= 2x2-x-1
2x2 - x - 1 = 0
<=> 2x2 - 2x + x - 1 = 0
<=> 2x(x - 1) + (x - 1) = 0
<=> (x - 1)(2x + 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)
Vậy x = 1 ; x = -1/2 là nghiệm của đa thức R(x)
d) S(x)= 3x2-x-4
3x2 - x - 4 = 0
<=> 3x2 + 3x - 4x - 4 = 0
<=> (3x2 + 3x) - (4x + 4) = 0
<=> 3x(x + 1) - 4(x + 1) = 0
<=> (x + 1)(3x - 4) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = -1 ; x = 4/3 là nghiệm của đa thức S(x)
Bài 1:
Đề sai bạn ơi, phải là A(x)=x3-2x2+x-5
a, \(A\left(x\right)+B\left(x\right)=x^3-2x^2+x-5-x^3+2x^2+3x-9\)\(=4x-16\)
\(A\left(x\right)-B\left(x\right)=x^3-2x^2+x-5+x^3-2x^2-3x+9\)\(=2x^3-4x^2-2x+4\)
b, \(A\left(x\right)+B\left(x\right)=4x-16=4\left(x-4\right)\)\(\Rightarrow x=4\)
Vậy nghiệm của A(x)+B(x) là 4
Bài 2:
a, \(C\left(x\right)=-8x^4+5x^4+2x^3-4x^3+x^2+x+5\)\(=-3x^4-2x^3+x^2+x+5\)
\(D\left(x\right)=3,5+x^4-4x^3-4x^3+7-2x^4-3x^5\)\(=-3x^5+x^4-2x^4-4x^3-4x^3+3.5+7\)
\(=-3x^5-x^4-8x^3+10,5\)
b, \(C\left(x\right)+D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(-3x^5-x^4-8x^3+10,5\)\(=-3x^5-4x^4-10x^3+x^2+x+15,5\)
\(Q\left(x\right)=\)\(C\left(x\right)-D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(+3x^5+x^4+8x^3-10,5\)
\(=3x^5-2x^4+6x^3+x^2+x-5,5\)
c, \(D\left(x\right)=\)\(-3x^5-x^4-8x^3+10,5\)(not ra)
a) D(x) = 2x2 + 3x - 35
D(-5) = 2 . ( -5 )2 + 3 . ( -5 ) -35 = 2 . 25 - 15 - 35 = 50 - 15 - 35 = 0
=> x = -5 là nghiệm của D(x)
b) F(x) = -5x - 6
F(x) = 0 <=> -5x - 6 = 0
<=> -5x = 6
<=> x = -6/5
c) E - ( 2x2 - 5xy2 + 3y3 ) = 5x2 + 6xy2 - 8y3
E = 5x2 + 6xy2 - 8y3 + 2x2 - 5xy2 + 3y3
E = 7x2 + xy2 -5y3
a, \(D\left(x\right)=2x^2+3x-35\)
\(D\left(-5\right)=2\left(-5\right)^2+3.\left(-5\right)-35=2.25-15-35=0\)
Vậy x = -5 là nghiệm của đa thức
b, Sửa đề \(F\left(x\right)=-5x-6=0\)
\(x=-\frac{6}{5}\)
c, \(E-\left(2x^2-5xy^2+3y^3\right)=5x^2+6xy^2-8y^3\)
\(E-2x^2+5xy^2-3y^3=5x^2+6xy^2-8y^3\)
\(E=5x^2+6xy^2-8y^3+2x^2-5xy^2+3y^3\)
\(E=7x^2+xy^2-5y^3\)
trắc nghiệm
câu 1: c
câu 2: B
câu 3: D
câu 4: A
câu 5: C
câu 6: D
tự luận
câu 1:
a)M(x) = x4 + 2x2 + 1
b) M(x) + N(x) = -4x4 + x3 + 5x2 - 2
M(x) - N(x) = 6x4 - x3 - x2 + 4
c) \(M\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1=\dfrac{25}{16}\)