Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Ta sẽ tìm cách đưa biểu thức \(A\) vế dạng dùng được bất đẳng thức \(AM-GM\)
Đặt \(B=x-1+\frac{1}{x-1}\) thì khi đó, \(A-2=B\) \(\Rightarrow\) \(A=B+2\) \(\left(1\right)\)
Với mọi \(x>1\) thì ta luôn có:
\(B=x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{\left(x-1\right)}}=2\) \(\left(2\right)\) (bất đẳng thức \(AM-GM\) cho các cặp số không âm \(\left(x-1\right)\) và \(\left(\frac{1}{x-1}\right)\))
Do đó, từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(A\ge2+2=4\)
Vậy, \(A_{min}=4\) với \(x>1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=2\)
\(A=x+1+\frac{1}{x-1}=\frac{x^2-1+1}{x-1}=\frac{x^2}{x-1}\)
Ta có : \(\left(x-2\right)^2\ge0\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4x-4\Leftrightarrow x^2\ge4\left(x-1\right)\)
\(\Rightarrow A=\frac{x^2}{x-1}\ge4\)(Dấu "=" xảy ra <=> x = 2 )
Vậy Min A = 4 \(\Leftrightarrow x=2\)
\(P=\frac{x^2}{y^2+1}+\frac{y^2}{z^2+1}+\frac{z^2}{x^2+1}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2}\)
Với \(x^2y^2+y^2z^2+z^2x^2\le\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\Rightarrow P\ge\frac{3\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)^2+3\left(x^2+y^2+z^2\right)}=\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}\)
Xét:\(\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}-\frac{3}{2}=\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2\left(x^2+y^2+z^2+3\right)}\ge0\)
Đến đây xong rồi he
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
\(A=4\left(x-1\right)+\frac{1}{x-1}-1\ge2\sqrt{\frac{4\left(x-1\right)}{x-1}}-1=3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(4\left(x-1\right)^2=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\left(loai\right)\\x=\frac{3}{2}\left(nhan\right)\end{cases}}\)
Đơn giản biểu thức ta được:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)
\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)
Ta bắt đầu tìm \(MIN:\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\)
Tìm \(MAX\) cho bạn luôn:
Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)
Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)
\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)
\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)
\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)
Để \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1
\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0
Vậy không tìm được \(B_{max}\)
Áp dụng bđt: a2 + b2 > = (a + b)2/2
Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b
Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CM đúng <=> (a + b)2 > = 4ab
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)
Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)
Dấu"=" xảy ra <=> x = y = 1/2
Vậy minA = 18/ <=> x = y = 1/2
đặt \(x-1=t\)ta có :
\(A=t+\frac{1}{t}+2=\frac{t^2}{t}+\frac{1}{t}-\frac{2t}{t}+4=\frac{\left(t-1\right)^2}{t}+4\ge4\)
Dấu "=" xảy ra <=> t = 1 <=> x = 2