K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

x y A B C M D E

Giải :a) Ta có BD // Ay (gt)

=> góc DBM = góc A (so le trong)

mà góc A = 900 => góc BDM = 900

Xét tam giác AMC và tam giác BMD

có góc A = góc DBM = 900 (cmt)

   MA = MB(gt)

  góc AMC = góc BMD ( đối đỉnh)

=> tam giác AMC = tam giác BMD (g.c.g)

b) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> MC = MD ( hai cạnh tương ứng)

Xét tam giác MEC và tam giác MED

có MC = MD (cmt)

   CME = DME (gt)

 ME : chung

=> tam giác MEC = tam giác MED (c.g.c)

=> góc CEM = góc DEM (hai góc tương ứng) 

Mà tia EM nằm giữa ED và EC

=> EM là tia p/giác của góc DEC (Đpcm)

c) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> BD = AC ( hai cạnh tương ứng)

Mà DE = BD + BE

hay AC + BE = DE 

=> BE = DE - AC (1)

Ta lại có tam giác MEC = tam giác MED (cm câu b)

=> EC = ED (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra BE = CE - AC (Đpcm)

27 tháng 4 2016

_Vẽ hình đi cha=)))

2 tháng 12 2021

Bn có thể vô link này xem nhé

 https://pnrtscr.com/w8q2qqhttps://new.swift-il.com/

2 tháng 12 2021

gửi cái link vớ vẩn gì vậy
người ta đang hok
trêu người ta vô duyên vãi

18 tháng 3 2017

1.Tự vẽ hình ha!

Cm:

a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:

OA=OC (gt)

OD=OB (gt)

\(\widehat{O}\)chung

=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)

=>AD=BC (2 cạnh tương ứng) (Đpcm)

b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)

Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)

Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)

Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)

\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)

Ta có: OA=OC;OB=OD (GT)

=> OB-OA=OD-OC

=>AB=CD

Xét\(\Delta AIB\) và\(\Delta CID\)có:

AB=CD (cmt)

\(\widehat{IAB}=\widehat{ICD}\)(cmt)

\(\widehat{ODA}=\widehat{OBC}\)(cmt)

=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)

=>AI=IC; IB=ID (đpcm)

c) Xét \(\Delta OID\)\(\Delta OIB\)có:

OD=OB (gt)

ID=IB (cmt)

\(\widehat{ODA}=\widehat{OBC}\)(cmt)

=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)

=>\(\widehat{DOI}=\widehat{BOI}\)

=> OI là tia pg của góc xOy (đpcm)