\(A=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}}\) (gốm 100 dấu căn)

Cmr: A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

Có \(A>\sqrt{6}\)

Có \(\sqrt{6}< \sqrt{9}=3\) \(\Rightarrow\sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)\(\Rightarrow A=\sqrt{6+\sqrt{6+...+\sqrt{6}}}< 3\)

\(\Rightarrow\sqrt{6}< A< 3\)

\(\Rightarrow A\notin N\)

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình 

19 tháng 5 2017

Đặt A=\(\sqrt{4-\sqrt{15}}+\sqrt{5-\sqrt{21}}+\sqrt{6-\sqrt{35}}+\sqrt{6}\)

=>A\(\sqrt{2}=\sqrt{8-2\sqrt{15}}+\sqrt{10-2\sqrt{21}}+\sqrt{12-2\sqrt{35}}+\sqrt{12}=\sqrt{5-2\sqrt{3.5}+3}+\sqrt{7-2\sqrt{3.7}+3}+\sqrt{7-2\sqrt{5.7}+5}+\sqrt{12}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}+2\sqrt{3}=\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}+\sqrt{7}-\sqrt{5}+2\sqrt{3}=2\sqrt{7}-2\sqrt{3}+2\sqrt{3}=2\sqrt{7}\)

19 tháng 5 2017

Bổ sung \(A\sqrt{2}=2\sqrt{7}\Rightarrow A=\sqrt{2}.\sqrt{7}=\sqrt{14}\)

1 tháng 10 2018

\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)

\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)

\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)

\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)

\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)

\(=\)\(3\sqrt{6}+9\)

Chúc bạn học tốt ~ 

1 tháng 10 2018

\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)

\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) ) 

\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)

\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) ) 

\(=\)\(1\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm >.< 

8 tháng 7 2018

a) \(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)\(\Leftrightarrow A=\left[\left(\sqrt{57}+6\right)+\left(3\sqrt{6}+\sqrt{38}\right)\right]\left[\left(\sqrt{57}+6\right)-\left(3\sqrt{6}+\sqrt{38}\right)\right]\)\(\Leftrightarrow A=\left(\sqrt{57}+6\right)^2-\left(3\sqrt{6}+\sqrt{38}\right)^2\)

\(\Leftrightarrow A=57+12\sqrt{57}+36-54-12\sqrt{57}-38\)

\(\Leftrightarrow A=1\)

b) \(B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{1+4\sqrt{3}+\left(2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{\sqrt{8+4\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{\sqrt{6}+\sqrt{2}}\)

\(\Leftrightarrow B=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=1\)

c)\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{3^2-2\times3\times2\sqrt{5}+\left(2\sqrt{5}\right)^2}}}\)

\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

24 tháng 7 2019

\(\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{5-4\sqrt{5}+4}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}\)

=\(\sqrt{5}-2\)

24 tháng 7 2019

\(\sqrt{16-2\sqrt{55}}\)

=\(\sqrt{11-2\sqrt{11}.\sqrt{5}+5}\)

=\(\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

=\(\sqrt{11}-\sqrt{5}\)