\(a=\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}\)( 2020 số 6.

C/m 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Bài 1:

a)    \(=5.|2a|-5a^2\)

b)    \(=7\left(a-1\right)+5a=12a-7\)

c)    \(|a-2|-5\sqrt{a+2}\)

Bài 2:

a)    \(=3-\sqrt{2}+5-\sqrt{2}=8-2\sqrt{2}\)

b)    \(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)

\(=2\sqrt{2}\)

c)    \(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)

\(=-2\sqrt{5}\)

5 tháng 9 2020

a) \(5\sqrt{4a^2}-5a^2\)

\(=5.|2a|-5a^2\)

b) \(7\sqrt{\left(a-1\right)^2}+5a\)

\(=7\left(a-1\right)+5a\)

\(=12a-7\)

c) \(\sqrt{\left(2-a\right)^2}-5\sqrt{a+2}\)

\(=|a-2|-5\sqrt{a+2}\)

bài 2:

a)\(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-5\right)^2}\)

\(=3-\sqrt{2}+5-\sqrt{2}\)

\(=8-2\sqrt{2}\)

b) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)

\(=2\sqrt{2}\)

c)\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)

\(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)

\(=-2\sqrt{5}\)

10 tháng 6 2018

\(\text{a) }\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\\ =\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\)

\(\text{b) }\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{3+2+2\sqrt{6}}+\sqrt{3+2-2\sqrt{6}}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)

\(\text{c) }\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\\ =\sqrt{7+1-2\sqrt{7}}-\sqrt{7+1+2\sqrt{7}}\\ =\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\\ =\sqrt{7}-1-\sqrt{7}-1\\ =-2\)

\(\text{d) }\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\\ =\sqrt{20+9+12\sqrt{5}}+\sqrt{20+9-12\sqrt{5}}\\ =\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\\ =\sqrt{20}+3+\sqrt{20}-3\\ =2\sqrt{20}\\ =4\sqrt{5}\)

\(\text{e) }\left(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}\right):\sqrt{169}\\ =\left(0,5-15+1,5\right):13\\ =\left(-13\right):13=-1\)

\(\text{f) }3-\sqrt{5}+3+\sqrt{5}\\ =6\)

14 tháng 7 2018

a)  \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

    \(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

b)   \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)

       \(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)

c)  \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

     \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)

d)  \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)

\(=\sqrt{5+\sqrt{2}}\)

e)  \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)

\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)

\(=2+\sqrt{9-4\sqrt{5}}\)

\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=2+\sqrt{5}-2=\sqrt{5}\)

f)   đề sai nhé:  

\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)

g)  \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)

h)  \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)

14 tháng 6 2018

Các câu sau bạn tự làm đi mCăn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

7 tháng 7 2018

a, \(\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}\right)^2-2\sqrt{3}.\sqrt{5}-\left(\sqrt{3}\right)^2\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{5}-\sqrt{3}\)

b,

9 tháng 6 2019

a) Ta có: \(2\sqrt{5}=\sqrt{20}>\sqrt{7}\)

b) Ta có: \(4\sqrt{5}=\sqrt{80}< \sqrt{216}=6\sqrt{6}\)

\(\Rightarrow-4\sqrt{5}>-6\sqrt{6}\)

c) Ta có: \(\sqrt{2020}-\sqrt{2018}>0>\sqrt{2019}-\sqrt{2021}\)

a: \(=-6\sqrt{b}-\dfrac{1}{3}\cdot3\sqrt{3b}+\dfrac{1}{5}\cdot5\sqrt{6b}\)

\(=-6\sqrt{b}-\sqrt{3}\cdot\sqrt{b}+\sqrt{6}\cdot\sqrt{b}\)

\(=\sqrt{b}\left(-6-\sqrt{3}+\sqrt{6}\right)\)

c: \(=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}\)

\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)

d: \(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

e: \(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)

\(=\sqrt{6+2\cdot\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)