Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\)(\(A\ge0\))
<=> \(A^2=\left(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\right)^2\)
Áp dụng bđt bunhiacopski có:
\(\left(1.\sqrt{5a+1}+1.\sqrt{5b+1}+1.\sqrt{5c+1}\right)^2\le\left(1+1+1\right)\left(5a+1+5b+1+5c+1\right)\)
<=> \(A^2\le3\left(5a+5b+5c+3\right)=3.\left[5\left(a+b+c\right)+3\right]=3\left(5.1+3\right)=24\)(do a+b+c=1)
<=> \(A\le2\sqrt{6}\)
Dấu"=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Vậy \(A\le2\sqrt{6}\)
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|\)
\(=\sqrt{2}-1+2-\sqrt{2}\)
\(=1\)
b) \(\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\left|2\sqrt{6}-3\right|-\left|5-2\sqrt{6}\right|\)
\(=2\sqrt{6}-3-5+2\sqrt{6}\)
\(=4\sqrt{6}-8\)
c) \(\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(3-\sqrt{6}\right)^2}\)
\(=\left|\sqrt{6}-1\right|+\left|3-\sqrt{6}\right|\)
\(=\sqrt{6}-1+3-\sqrt{6}\)
\(=2\)
\(a,\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1}+\left|2-\sqrt{2}\right|\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+2-\sqrt{2}\)
\(=\left|\sqrt{2}-1\right|+2-\sqrt{2}\)
\(=\sqrt{2}-1+2-\sqrt{2}\)
\(=1\)
\(---\)
\(b,\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\left|5-2\sqrt{6}\right|\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-5+2\sqrt{6}\)
\(=\left|2\sqrt{6}-3\right|-5+2\sqrt{6}\)
\(=2\sqrt{6}-3-5+2\sqrt{6}\)
\(=4\sqrt{6}-8\)
\(---\)
\(c,\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot3+3^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=\left|\sqrt{6}-1\right|+\left|\sqrt{6}-3\right|\)
\(=\sqrt{6}-1+3-\sqrt{6}\)
\(=2\)
#\(Toru\)
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a: ta có: \(M=\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{a\left(\sqrt{ab}-a\right)+b\left(\sqrt{ab}+b\right)}{\left(\sqrt{ab}+b\right)\left(\sqrt{ab}-a\right)}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)\cdot\sqrt{a}\cdot\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}-\dfrac{a^2-b^2}{\sqrt{ab}\left(a-b\right)}\)
\(=\dfrac{-\sqrt{ab}}{\sqrt{ab}\left(a-b\right)}\)
\(=-\dfrac{1}{a-b}\)
b: Thay \(a=\sqrt{5}+1\) và \(b=\sqrt{5}-1\) vào M, ta được:
\(M=\dfrac{-1}{\sqrt{5}+1-\sqrt{5}+1}=\dfrac{-1}{2}\)
\(\sqrt{6+\sqrt{6+...+\sqrt{6}}}>\sqrt{6}=\sqrt{\frac{150}{25}}>\sqrt{\frac{144}{25}}=\frac{12}{5}\)
\(\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}>\sqrt[3]{6}=\sqrt[3]{\frac{750}{125}}>\sqrt[3]{\frac{729}{125}}=\frac{9}{5}\)
\(\Rightarrow A>\frac{12}{5}+\frac{9}{5}=\frac{21}{5}>4\)
\(\sqrt{6+\sqrt{6+...+\sqrt{6}}}< \sqrt{6+\sqrt{6+...+\sqrt{9}}}=3\)
\(\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}< \sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{8}}}=2\)
\(\Rightarrow A< 3+2=5\)
\(\Rightarrow4< A< 5\Rightarrow\left[A\right]=4\)