Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)
=0
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))
\(=2\sqrt{3}\)
a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))
=0
\(A=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=\sqrt[3]{2-\sqrt{5}}.2\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{4-5}=-2\)
\(B=\sqrt[4]{\left(3-2\sqrt{2}\right)^2}-\sqrt{2}=\sqrt{3-2\sqrt{2}}-\sqrt{2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1\)
\(C=\sqrt[4]{\left(6-2\sqrt{5}\right)^2}=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(D=1+\sqrt[4]{\left(4-2\sqrt{3}\right)^2}=1+\sqrt{4-2\sqrt{3}}\)
\(=1+\sqrt{\left(\sqrt{3}-1\right)^2}=1+\sqrt{3}-1=\sqrt{3}\)
Câu e lấy nguyên văn từ sách thầy Vũ Hữu Bình:
Đặt \(x=\sqrt[4]{5}\Rightarrow x^4=5\Rightarrow5-x^4=0\)
\(E=\frac{2}{\sqrt{4-3x+2x^2-x^3}}=\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}=\frac{2\left(x+1\right)}{\sqrt{-x^5+5x+4}}\)
\(E=\frac{2\left(x+1\right)}{\sqrt{x\left(5-x^4\right)+4}}=\frac{2\left(x+1\right)}{\sqrt{4}}=x+1=\sqrt[4]{5}+1\)
Không hiểu ý tưởng nhân cả tử và mẫu với \(x+1\) từ đâu ra luôn
a) \(\sqrt{3-2\sqrt{2}}\)+\(\sqrt{3+2\sqrt{2}}\)
= \(\sqrt{2-2\sqrt{2}+1}\)+ \(\sqrt{2+2\sqrt{2}+1}\)
= \(\sqrt{\left(\sqrt{2}-1\right)^2}\)+ \(\sqrt{\left(\sqrt{2}+1\right)^2}\)
= \(\sqrt{2}\)-1+\(\sqrt{2}\)+1
=2\(\sqrt{2}\)
b) \(\sqrt{9-4\sqrt{5}}\)+ \(\sqrt{6+2\sqrt{5}}\)
= \(\sqrt{4-4\sqrt{5}+5}\)+\(\sqrt{4+2\sqrt{5}+2}\)
= \(\sqrt{\left(2-\sqrt{5}\right)^2}\)+\(\sqrt{\left(2+\sqrt{2}\right)^2}\)
= 2-\(\sqrt{5}\)+2+\(\sqrt{2}\)
= 4-\(\sqrt{5}\)+\(\sqrt{2}\)
rút gọn :
A=\(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)
B=\((a^5+2a^4-13a^3-a^2+18a-17)^{2017}\)
\(A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)
\(\Rightarrow A^3=14+3\sqrt[3]{\left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right)}\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\)
<=>A3=14-3A
<=>A3+3A-14=0
<=>A3-4A+7A-14=0
<=>A.(A-2)(A+2)+7.(A-2)=0
<=>(A-2)(A2+9A-14)=0
<=>A=2(nhận)
Vậy A=2
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}