Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
\(B=\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\frac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}.\)\(=\frac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=1+\sqrt{2}+\sqrt{3}\)
\(A=\sqrt{11+\sqrt{96}}=\sqrt{11+4\sqrt{6}}=\sqrt{8+2.2\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)\(=2\sqrt{2}+\sqrt{3}>1+\sqrt{2}+\sqrt{3}=B\)
\(\sqrt{a+2}-\sqrt{a}=\dfrac{2}{\sqrt{a+2}+\sqrt{a}}\)
\(\sqrt{b+2}-\sqrt{b}=\dfrac{2}{\sqrt{b+2}+\sqrt{b}}\)
mà a>b>0
nên \(\sqrt{a+2}-\sqrt{a}< \sqrt{b+2}-\sqrt{b}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a^3 = 5\(\sqrt{2}\) b^3= 5\(\sqrt[3]{2}\).\(\sqrt{5\sqrt[3]{2}}\)
ta co \(\sqrt{5\sqrt[3]{2}}\)>2 >\(\sqrt{2}\)
=> b^3 >a^3 => b>a