Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
Vậy \(A\in Z\)
Làm tương tự với B.
\(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\Rightarrow a^3=3+\sqrt{17}+3-\sqrt{17}+3\sqrt{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\\ =6+3a.\sqrt[3]{9-17}\\ =6-6a\\ \Rightarrow f\left(a\right)=\left(a^3+6a-5\right)^{2015}=\left(6-6a+6a-5\right)^{2015}=1\)
f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)
mik sửa lại câu f , tí nhé :
f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)
\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)
Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)
từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )
Vậy...
2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)
Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )
\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)
\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)
\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)
( cộng cả hai vế với -4040)
\(\Leftrightarrow2.2019< 4040\)
\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)
\(\Leftrightarrow2019< 2020\) ( luôn đúng )
=> điều giả sử đúng
Vậy....
4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)
theo ss phân số có cùng tử
Vậy....
phần 5 làm tương tự như phần 4 nhé
b: \(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
c: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
d: \(=\dfrac{\sqrt{18-2\sqrt{17}}-\sqrt{18+2\sqrt{17}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{17}-1-\sqrt{17}-1}{\sqrt{2}}=-\sqrt{2}\)
Bài làm của: Phùng Khánh Linh
c)\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
= \(\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{4^2-2.4.\sqrt{8}+\left(\sqrt{8}\right)^2}\)
= \(\sqrt{\left(3-2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{\left(4-\sqrt{8}\right)^2}\)
= \(\left|3-2\sqrt{2}\right|-\left|4-\sqrt{8}\right|\)
= (3 - 2\(\sqrt{2}\)) - (4 - \(\sqrt{8}\))
= 3 - 2\(\sqrt{2}\) - 4 + \(\sqrt{8}\)
= -1
\(a.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\text{|}\sqrt{3}+1\text{|}-\text{|}\sqrt{3}-1\text{|}=2\)\(b.\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\text{|}\sqrt{5}-2\text{|}-\text{|}\sqrt{5}+2\text{|}=-4\) Còn lại tương tự nhé .
a, \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
b,\(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{25-5}=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{20}=\dfrac{60}{20}=3\)
Ta có: \(a^3=\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)^3\)
\(=3+\sqrt{17}+3-\sqrt{17}+3\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)
(\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) )
\(=6+3\sqrt[3]{-8}.a=6-6a\)
\(\Rightarrow a^3+6a-6=0\Rightarrow a^3+6a-5=1\)
\(\Rightarrow A=1^{2019}=1\)