Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\text{VT}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}=\left(\frac{b}{b+c}-\frac{b}{a+b}\right)+\left(\frac{c}{c+a}-\frac{c}{c+b}\right)+\left(\frac{a}{a+b}-\frac{a}{a+c}\right)\)
\(=\frac{b(a-c)}{(b+c)(a+b)}+\frac{c(b-a)}{(c+a)(c+b)}+\frac{a(c-b)}{(a+b)(a+c)}\)
\(=\frac{b(a-c)(a+c)+c(b-a)(b+a)+a(c-b)(c+b)}{(a+b)(b+c)(c+a)}=\frac{b(a^2-c^2)+c(b^2-a^2)+a(c^2-b^2)}{(a+b)(b+c)(c+a)}\)
\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(*)\)
Và:
\(\text{VP}=\frac{(b^2-c^2)(b+c)+(c^2-a^2)(c+a)+(a^2-b^2)(a+b)}{(a+b)(b+c)(c+a)}\)
\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(**)\)
Từ $(*); (**)\Rightarrow $ đpcm
Với điều kiện như đề bài
Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)
Tướng tự:
\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)
Em nhớ làm tiếp nhé!
Ap dụng hằng đẳng thức.
\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{b^2}{\left(a-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(c-a\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a+b}{a-c}+\frac{b+c}{c-a}=\frac{a+b}{a-c}-\frac{b+c}{a-c}=1\left(đpcm\right)\)
\(P=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
Vì \(c^2+2\left(ab-ac-bc\right)=0\) nên :
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+\left(a-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}{b^2+\left(b-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}\)
\(=\frac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}=\frac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\) \(\left(b\ne c,a+b\ne0\right)\)