Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta\)AMB và \(\Delta\)ANC có:
AM=AN (tam giác AMN cân tại A)
\(\widehat{AMB}=\widehat{ANC}\)(tam giác AMN cân tại A)
MB=CN (gt)
=> \(\Delta AMB=\Delta ANC\left(cgc\right)\)
b) xét \(\Delta\)MBH và \(\Delta\)NCK có:
\(\widehat{HMB}=\widehat{KNC}\)(tam giác AMN cân tại A)
MB=CN (gt)
\(\widehat{HBM}=\widehat{KCN}=90^o\)
=> \(\Delta MBH=\Delta NCK\left(gcg\right)\)
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
A B C E D H I
Xét tam giác BCD và tam giác CBE
có BC chung
góc CDB = góc CEB=900
góc EBC=góc DCB ( vì tam giác ABC cân tại A)
suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)
Mà góc CBD + góc DBE= góc CBE (3)
góc BCE+góc ECD = góc BCD (4)
góc EBC=góc DCB ( vì tam giác ABC cân tại A) (5)
Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD
hay góc IBE = góc ICD
c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)
Xét tam giác vuông ADI và tam giác vuông AEI có
AI chung, AD=AE (CMT)
suy ra tam giá ADI = tam giác AEI (cạnh huyền-cạnh góc vuông)
suy ra góc EAI = góc DAI (hai góc tương ứng)
suy ra AI là tia phân giác của góc BAC
mà tam giác ABC cân tại A
suy ra AI là đường phân giác đồng thời là đường cao
AI vuông góc với BC tại H
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
Bài 1)
a) Xét ∆ vuông ABK và ∆ vuông EBK ta có :
AK = KC
BK chung
=> ∆ABK = ∆EBK ( ch-cgv)
=> AB = BE
=> ∆ABE cân tại B
Mà ABK = EBK
Hay BK là phân giác ABE
=> ∆ABE cân có BK là phân giác
=> BK là trung tuyến đồng thời là đường cao
=> BK\(\perp\)AE
b) Gọi H là giao điểm BK và DC
Xét ∆ vuông AKD và ∆ vuông EKC ta có
AK = KE
AKD = EKC ( đối đỉnh)
=> ∆AKD = ∆EKC ( cgv-gn)
=> AD = EC ( tương ứng)
Mà ∆ABE cân tại B (cmt)
=> AB = AE
Mà AB + AD = BD
BE + EC = BC
=> BD = BC
=> ∆BDC cân tại B
=> BDC = \(\frac{180°-B}{2}\)
Vì ∆ABE cân tại B
=> BAE = \(\frac{180°-B}{2}\)
=> BAE = BDC
Mà 2 góc này ở vị trí đồng vị
=> AE//DC
Vì H là giao điểm DC và BK
=> BH là phân giác DBC
Mà ∆BDC cân tại B (cmt)
=> BK đồng thời là trung tuyến và đường cao
=> BH \(\perp\)DC
Hay BK \(\perp\)DC
Bài 2)
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Xét ∆ vuông ABK và ∆ vuông ACE ta có :
AB = AC
A chung
=> ∆ABK = ∆ACE ( ch-gn)
=> ABK = ACE ( tương ứng)
Xét ∆AOB và ∆AOC ta có :
AB = AC
ABK = ACE
AO chung
=> ∆AOB = ∆AOC (c.g.c)
=> BAO = CAO
Hay AO là phân giác BAC
b) Vì ∆AKB = ∆AEC (cmt)
=> AE = AK
Mà AB = AC
=>EB = KC
Xét ∆ vuông KOC và ∆ vuông EOB ta có
EB = KC
EOB = KOC ( đối đỉnh)
=> ∆KOC = ∆EOB ( cgv-gn)
=> OB = OC
=> ∆OBC cân tại O
c) Xét ∆ cân ABC ta có :
AO là phân giác BAC
AI là trung tuyến BC
=> AI đồng thời là phân giác và là đường cao
=> A , O , I thẳng hàng