Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
Công thức hạ bậc
\(sin^2a=\frac{1}{2}-\frac{1}{2}cos2a\)
Julian Edward
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(P=1-\left[1-cos\left(\frac{\pi}{2}-2a\right)\right]+sin2a-cos2a-6cota\)
\(=sin2a+sin2a-cos2a-6cota\)
\(=2sin2a-cos2a-6cota\)
\(=4sina.cosa-\left(cos^2a-sin^2a\right)-\frac{6cosa}{sina}\) (thay số và bấm máy)
Câu 1:
\(tan\left(a+\frac{\pi}{4}\right)=1\Rightarrow a+\frac{\pi}{4}=\frac{\pi}{4}+k\pi\Rightarrow a=k\pi\) (\(k\in Z\) )
Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow\frac{\pi}{2}< k\pi< 2\pi\Rightarrow\frac{1}{2}< k< 2\Rightarrow k=1\Rightarrow a=\pi\)
\(\Rightarrow P=cos\left(\pi-\frac{\pi}{6}\right)+sin\pi=-\frac{\sqrt{3}}{2}\)
Câu 2:
\(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}=cot\left(-\frac{\pi}{6}\right)\)
\(\Rightarrow a+\frac{\pi}{3}=-\frac{\pi}{6}+k\pi\Rightarrow a=-\frac{\pi}{2}+k\pi\) (\(k\in Z\))
\(\Rightarrow\frac{\pi}{2}< -\frac{\pi}{2}+k\pi< 2\pi\Rightarrow-\pi< k\pi< \frac{5\pi}{2}\)
\(\Rightarrow-1< k< \frac{5}{2}\Rightarrow k=\left\{0;1;2\right\}\Rightarrow a=\left\{-\frac{\pi}{2};\frac{\pi}{2};\frac{3\pi}{2}\right\}\) \(\Rightarrow cosa=0\)
\(\Rightarrow P=sin\left(\pi+\frac{\pi}{6}\right)+0=-sin\frac{\pi}{6}=-\frac{1}{2}\)
Vậy đáp án sai
Bạn thay thử \(a=\frac{3\pi}{2}\) vào biểu thức ban đầu coi có đúng \(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\) ko là biết đáp án đúng hay sai liền mà
\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)
\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)
Theo mk là A đúng
ta có : cos2x = \(\frac{1+cos2x}{2}\)
=> cos2(\(\frac{\pi}{4}\)+\(\frac{\alpha}{2}\))= \(\frac{1+cos\left(\frac{\pi}{2}+\alpha\right)}{2}\) = \(\frac{1-sinx}{2}\)
\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=2cos^2a-1=\frac{7}{25}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}=...\)
c sai đề
\(sin\left(a+\frac{\pi}{4}\right)=sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}=...\)
\(M=\frac{\left(-\frac{3}{5}\right)^2-\left(\frac{7}{25}\right)^2}{-\frac{3}{4}}=...\)
\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)
\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)